Multicarrier Waveform Harmonization and Complexity Analysis for an Efficient 5G Air Interface Implementation

The coexistence of multiple air interface variants in the upcoming fifth generation (5G) wireless technology remains a matter of ongoing discussion. This paper focuses on the physical layer of the 5G air interface and provides a harmonization solution for the joint implementation of several multicar...

Full description

Bibliographic Details
Main Authors: David Garcia-Roger, Sandra Roger, Josue Flores de Valgas, Jose F. Monserrat
Format: Article
Language:English
Published: Hindawi-Wiley 2017-01-01
Series:Wireless Communications and Mobile Computing
Online Access:http://dx.doi.org/10.1155/2017/9765614
Description
Summary:The coexistence of multiple air interface variants in the upcoming fifth generation (5G) wireless technology remains a matter of ongoing discussion. This paper focuses on the physical layer of the 5G air interface and provides a harmonization solution for the joint implementation of several multicarrier waveform candidates. Waveforms based either on cyclic prefix-orthogonal frequency division multiplexing (CP-OFDM) or on filter bank multicarrier (FBMC) are first presented through a harmonized system model. Complexity comparisons among five different waveforms are provided. Then, the complexity of a proposed configurable hardware implementation setup for waveform transmission and reception is evaluated. As a result, the harmonized transmitter and receiver exhibit 25–40% and 15–25% less complexity in floating-point operations, respectively, in comparison to two standalone implementations of the most complex waveform instances of the CP-OFDM and FBMC families. This highlights the similarities between both families and illustrates the component reuse advantages associated with the proposed harmonized solution.
ISSN:1530-8669
1530-8677