Multiple-Pole Solutions to a Semidiscrete Modified Korteweg-de Vries Equation

Multiple-pole soliton solutions to a semidiscrete modified Korteweg-de Vries equation are derived by virtue of the Riemann-Hilbert problem with higher-order zeros. A different symmetry condition is introduced to build the nonregular Riemann-Hilbert problem. The simplest multiple-pole soliton solutio...

Full description

Bibliographic Details
Main Authors: Zhixing Xiao, Kang Li, Junyi Zhu
Format: Article
Language:English
Published: Hindawi Limited 2019-01-01
Series:Advances in Mathematical Physics
Online Access:http://dx.doi.org/10.1155/2019/5468142
id doaj-ae509a8094d24ea599da9211e9338f15
record_format Article
spelling doaj-ae509a8094d24ea599da9211e9338f152021-07-02T10:05:51ZengHindawi LimitedAdvances in Mathematical Physics1687-91201687-91392019-01-01201910.1155/2019/54681425468142Multiple-Pole Solutions to a Semidiscrete Modified Korteweg-de Vries EquationZhixing Xiao0Kang Li1Junyi Zhu2The High School, Huanghe S&T College, Zhengzhou, Henan 450006, ChinaThe 79th Middle School, Zhengzhou, Henan 450000, ChinaSchool of Mathematics and Statistics, Zhengzhou University, Zhengzhou, Henan 450001, ChinaMultiple-pole soliton solutions to a semidiscrete modified Korteweg-de Vries equation are derived by virtue of the Riemann-Hilbert problem with higher-order zeros. A different symmetry condition is introduced to build the nonregular Riemann-Hilbert problem. The simplest multiple-pole soliton solution is presented. The dynamics of the solitons are studied.http://dx.doi.org/10.1155/2019/5468142
collection DOAJ
language English
format Article
sources DOAJ
author Zhixing Xiao
Kang Li
Junyi Zhu
spellingShingle Zhixing Xiao
Kang Li
Junyi Zhu
Multiple-Pole Solutions to a Semidiscrete Modified Korteweg-de Vries Equation
Advances in Mathematical Physics
author_facet Zhixing Xiao
Kang Li
Junyi Zhu
author_sort Zhixing Xiao
title Multiple-Pole Solutions to a Semidiscrete Modified Korteweg-de Vries Equation
title_short Multiple-Pole Solutions to a Semidiscrete Modified Korteweg-de Vries Equation
title_full Multiple-Pole Solutions to a Semidiscrete Modified Korteweg-de Vries Equation
title_fullStr Multiple-Pole Solutions to a Semidiscrete Modified Korteweg-de Vries Equation
title_full_unstemmed Multiple-Pole Solutions to a Semidiscrete Modified Korteweg-de Vries Equation
title_sort multiple-pole solutions to a semidiscrete modified korteweg-de vries equation
publisher Hindawi Limited
series Advances in Mathematical Physics
issn 1687-9120
1687-9139
publishDate 2019-01-01
description Multiple-pole soliton solutions to a semidiscrete modified Korteweg-de Vries equation are derived by virtue of the Riemann-Hilbert problem with higher-order zeros. A different symmetry condition is introduced to build the nonregular Riemann-Hilbert problem. The simplest multiple-pole soliton solution is presented. The dynamics of the solitons are studied.
url http://dx.doi.org/10.1155/2019/5468142
work_keys_str_mv AT zhixingxiao multiplepolesolutionstoasemidiscretemodifiedkortewegdevriesequation
AT kangli multiplepolesolutionstoasemidiscretemodifiedkortewegdevriesequation
AT junyizhu multiplepolesolutionstoasemidiscretemodifiedkortewegdevriesequation
_version_ 1721332469110669312