On strong uniform distribution IV
<p/> <p>Let <inline-formula><graphic file="1029-242X-2005-639193-i1.gif"/></inline-formula> be a strictly increasing sequence of natural numbers and let <inline-formula><graphic file="1029-242X-2005-639193-i2.gif"/></inline-formula>...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2005-01-01
|
Series: | Journal of Inequalities and Applications |
Online Access: | http://www.journalofinequalitiesandapplications.com/content/2005/639193 |
id |
doaj-ae345c2f59cf4fb68ba9e4b5fb0bcae8 |
---|---|
record_format |
Article |
spelling |
doaj-ae345c2f59cf4fb68ba9e4b5fb0bcae82020-11-24T23:51:06ZengSpringerOpenJournal of Inequalities and Applications1025-58341029-242X2005-01-0120053639193On strong uniform distribution IVNair R<p/> <p>Let <inline-formula><graphic file="1029-242X-2005-639193-i1.gif"/></inline-formula> be a strictly increasing sequence of natural numbers and let <inline-formula><graphic file="1029-242X-2005-639193-i2.gif"/></inline-formula> be a space of Lebesgue measurable functions defined on <inline-formula><graphic file="1029-242X-2005-639193-i3.gif"/></inline-formula>. Let <inline-formula><graphic file="1029-242X-2005-639193-i4.gif"/></inline-formula> denote the fractional part of the real number <inline-formula><graphic file="1029-242X-2005-639193-i5.gif"/></inline-formula>. We say that <inline-formula><graphic file="1029-242X-2005-639193-i6.gif"/></inline-formula> is an <inline-formula><graphic file="1029-242X-2005-639193-i7.gif"/></inline-formula> sequence if for each <inline-formula><graphic file="1029-242X-2005-639193-i8.gif"/></inline-formula> we set <inline-formula><graphic file="1029-242X-2005-639193-i9.gif"/></inline-formula> <inline-formula><graphic file="1029-242X-2005-639193-i10.gif"/></inline-formula>, then <inline-formula><graphic file="1029-242X-2005-639193-i11.gif"/></inline-formula>, almost everywhere with respect to Lebesgue measure. Let <inline-formula><graphic file="1029-242X-2005-639193-i12.gif"/></inline-formula> <inline-formula><graphic file="1029-242X-2005-639193-i13.gif"/></inline-formula>. In this paper, we show that if <inline-formula><graphic file="1029-242X-2005-639193-i14.gif"/></inline-formula> is an <inline-formula><graphic file="1029-242X-2005-639193-i15.gif"/></inline-formula> for <inline-formula><graphic file="1029-242X-2005-639193-i16.gif"/></inline-formula>, then there exists <inline-formula><graphic file="1029-242X-2005-639193-i17.gif"/></inline-formula> such that if <inline-formula><graphic file="1029-242X-2005-639193-i18.gif"/></inline-formula> denotes <inline-formula><graphic file="1029-242X-2005-639193-i19.gif"/></inline-formula>, <inline-formula><graphic file="1029-242X-2005-639193-i20.gif"/></inline-formula> <inline-formula><graphic file="1029-242X-2005-639193-i21.gif"/></inline-formula>. We also show that for any <inline-formula><graphic file="1029-242X-2005-639193-i22.gif"/></inline-formula> sequence <inline-formula><graphic file="1029-242X-2005-639193-i23.gif"/></inline-formula> and any nonconstant integrable function <inline-formula><graphic file="1029-242X-2005-639193-i24.gif"/></inline-formula> on the interval <inline-formula><graphic file="1029-242X-2005-639193-i25.gif"/></inline-formula>, <inline-formula><graphic file="1029-242X-2005-639193-i26.gif"/></inline-formula>, almost everywhere with respect to Lebesgue measure.</p>http://www.journalofinequalitiesandapplications.com/content/2005/639193 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Nair R |
spellingShingle |
Nair R On strong uniform distribution IV Journal of Inequalities and Applications |
author_facet |
Nair R |
author_sort |
Nair R |
title |
On strong uniform distribution IV |
title_short |
On strong uniform distribution IV |
title_full |
On strong uniform distribution IV |
title_fullStr |
On strong uniform distribution IV |
title_full_unstemmed |
On strong uniform distribution IV |
title_sort |
on strong uniform distribution iv |
publisher |
SpringerOpen |
series |
Journal of Inequalities and Applications |
issn |
1025-5834 1029-242X |
publishDate |
2005-01-01 |
description |
<p/> <p>Let <inline-formula><graphic file="1029-242X-2005-639193-i1.gif"/></inline-formula> be a strictly increasing sequence of natural numbers and let <inline-formula><graphic file="1029-242X-2005-639193-i2.gif"/></inline-formula> be a space of Lebesgue measurable functions defined on <inline-formula><graphic file="1029-242X-2005-639193-i3.gif"/></inline-formula>. Let <inline-formula><graphic file="1029-242X-2005-639193-i4.gif"/></inline-formula> denote the fractional part of the real number <inline-formula><graphic file="1029-242X-2005-639193-i5.gif"/></inline-formula>. We say that <inline-formula><graphic file="1029-242X-2005-639193-i6.gif"/></inline-formula> is an <inline-formula><graphic file="1029-242X-2005-639193-i7.gif"/></inline-formula> sequence if for each <inline-formula><graphic file="1029-242X-2005-639193-i8.gif"/></inline-formula> we set <inline-formula><graphic file="1029-242X-2005-639193-i9.gif"/></inline-formula> <inline-formula><graphic file="1029-242X-2005-639193-i10.gif"/></inline-formula>, then <inline-formula><graphic file="1029-242X-2005-639193-i11.gif"/></inline-formula>, almost everywhere with respect to Lebesgue measure. Let <inline-formula><graphic file="1029-242X-2005-639193-i12.gif"/></inline-formula> <inline-formula><graphic file="1029-242X-2005-639193-i13.gif"/></inline-formula>. In this paper, we show that if <inline-formula><graphic file="1029-242X-2005-639193-i14.gif"/></inline-formula> is an <inline-formula><graphic file="1029-242X-2005-639193-i15.gif"/></inline-formula> for <inline-formula><graphic file="1029-242X-2005-639193-i16.gif"/></inline-formula>, then there exists <inline-formula><graphic file="1029-242X-2005-639193-i17.gif"/></inline-formula> such that if <inline-formula><graphic file="1029-242X-2005-639193-i18.gif"/></inline-formula> denotes <inline-formula><graphic file="1029-242X-2005-639193-i19.gif"/></inline-formula>, <inline-formula><graphic file="1029-242X-2005-639193-i20.gif"/></inline-formula> <inline-formula><graphic file="1029-242X-2005-639193-i21.gif"/></inline-formula>. We also show that for any <inline-formula><graphic file="1029-242X-2005-639193-i22.gif"/></inline-formula> sequence <inline-formula><graphic file="1029-242X-2005-639193-i23.gif"/></inline-formula> and any nonconstant integrable function <inline-formula><graphic file="1029-242X-2005-639193-i24.gif"/></inline-formula> on the interval <inline-formula><graphic file="1029-242X-2005-639193-i25.gif"/></inline-formula>, <inline-formula><graphic file="1029-242X-2005-639193-i26.gif"/></inline-formula>, almost everywhere with respect to Lebesgue measure.</p> |
url |
http://www.journalofinequalitiesandapplications.com/content/2005/639193 |
work_keys_str_mv |
AT nairr onstronguniformdistributioniv |
_version_ |
1725477441854504960 |