MiR-222 Targeted PUMA to Improve Sensitization of UM1 Cells to Cisplatin

microRNAs have been shown to play critical roles in regulating the chemosensitivity of cancer cells. As a member of the oncogenic miRNAs (oncomiRs), miR-222 has been reported to drive the oncogenesis of many types of malignancies. However, little is known concerning the specific role of miR-222 in h...

Full description

Bibliographic Details
Main Authors: Fangfang Jiang, Wei Zhao, Lijie Zhou, Zifeng Liu, Wenqing Li, Dongsheng Yu
Format: Article
Language:English
Published: MDPI AG 2014-12-01
Series:International Journal of Molecular Sciences
Subjects:
Online Access:http://www.mdpi.com/1422-0067/15/12/22128
Description
Summary:microRNAs have been shown to play critical roles in regulating the chemosensitivity of cancer cells. As a member of the oncogenic miRNAs (oncomiRs), miR-222 has been reported to drive the oncogenesis of many types of malignancies. However, little is known concerning the specific role of miR-222 in human oral squamous cell carcinoma (OSCC). The present study explored the role and mechanism of miR-222 in increasing the expression of p53 up-regulated modulator of apoptosis (PUMA) and enhancing the sensitivity of OSCC to cisplatin (CDDP). Results showed that antisense (As)-miR-222 inhibits the expression of miR-222. In contrast, PUMA was dramaticallyup-regulated. IC50 values were significantly decreased in cells treated with As-miR-222 combined with CDDP, to a greater extent than in cells treated with CDDP alone. Furthermore, As-miR-222 enhanced apoptosis and inhibited the invasiveness of UM1 cells. Analysis of the above data suggested that, in UM1 cells, there might be a regulatory loop between miR-222 and PUMA, and that miR-222 inhibition increased the chemosensitivity to CDDP. These findings demonstrated that down-regulation of miR-222 could enhance the chemosensitivity of human OSCC cells to CDDP, and that the combination of As-miR-222 and CDDP could be an effective therapeutic strategy by boosting the expression of PUMA for controlling the growth of OSCC.
ISSN:1422-0067