A context-aware delayed agglomeration framework for electron microscopy segmentation.

Electron Microscopy (EM) image (or volume) segmentation has become significantly important in recent years as an instrument for connectomics. This paper proposes a novel agglomerative framework for EM segmentation. In particular, given an over-segmented image or volume, we propose a novel framework...

Full description

Bibliographic Details
Main Authors: Toufiq Parag, Anirban Chakraborty, Stephen Plaza, Louis Scheffer
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2015-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC4446358?pdf=render
Description
Summary:Electron Microscopy (EM) image (or volume) segmentation has become significantly important in recent years as an instrument for connectomics. This paper proposes a novel agglomerative framework for EM segmentation. In particular, given an over-segmented image or volume, we propose a novel framework for accurately clustering regions of the same neuron. Unlike existing agglomerative methods, the proposed context-aware algorithm divides superpixels (over-segmented regions) of different biological entities into different subsets and agglomerates them separately. In addition, this paper describes a "delayed" scheme for agglomerative clustering that postpones some of the merge decisions, pertaining to newly formed bodies, in order to generate a more confident boundary prediction. We report significant improvements attained by the proposed approach in segmentation accuracy over existing standard methods on 2D and 3D datasets.
ISSN:1932-6203