The effect of soluble RAGE on inhibition of angiotensin II-mediated atherosclerosis in apolipoprotein E deficient mice.

The cross talk between RAGE and angiotensin II (AngII) activation may be important in the development of atherosclerosis. Soluble RAGE (sRAGE), a truncated soluble form of the receptor, acts as a decoy and prevents the inflammatory response mediated by RAGE activation. In this study, we sought to de...

Full description

Bibliographic Details
Main Authors: Dajeong Lee, Kyung Hye Lee, Hyelim Park, Soo Hyuk Kim, Taewon Jin, Soyoung Cho, Ji Hyung Chung, Soyeon Lim, Sungha Park
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2013-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC3731311?pdf=render
Description
Summary:The cross talk between RAGE and angiotensin II (AngII) activation may be important in the development of atherosclerosis. Soluble RAGE (sRAGE), a truncated soluble form of the receptor, acts as a decoy and prevents the inflammatory response mediated by RAGE activation. In this study, we sought to determine the effect of sRAGE in inhibiting AngII-induced atherosclerosis in apolipoprotein E knockout mice (Apo E KO).9 week old Apo E KO mice were infused subcutaneously with AngII (1 µg/min/kg) and saline for 4 weeks using osmotic mini-pumps. The mice were divided into 4 groups 1. saline infusion and saline injection; 2. saline infusion and sRAGE injection; 3. AngII infusion and saline injection; 4. AngII infusion and sRAGE injection. Saline or 0.5 µg, 1 µg, to 2 µg/day/mouse of sRAGE were injected intraperitoneally daily for 28 days. We showed that atherosclerotic plaque areas in the AngII-infused Apo E KO mice and markers of inflammation such as RAGE, ICAM-1, VCAM-1, and MCP-1 were increased in aorta compared to that of the Apo E KO mice. However, the treatment of 0.5 µg, 1 µg, and 2 µg of sRAGE in AngII group resulted in the dose-dependent decrease in atherosclerotic plaque area. We also demonstrated that sRAGE decreased RAGE expression level as well as inflammatory cytokines and cell adhesion molecules in AngII or HMGB1 treated-rat aorta vascular smooth muscle cells.The results demonstrated that partical blockade of RAGE activation by sRAGE prevent AngII -induced atherosclerosis. Therefore these results suggested that first, RAGE activation may be important in mediating AngII-induced atherogenesis, and second, AngII activation is a major pathway in the development of atherosclerosis. Taken together, results from this study may provide the basis for future anti- atherosclerotic drug development mediated through RAGE activation.
ISSN:1932-6203