Mazur spaces

A Mazur space is a locally convex topological vector space X such that every fϵXs is continuous where Xs is the set of sequentially continuous linear functionals on X; Xs is studied when X is of the form C(H), H a topological space, and when X is the weak * dual of a locally convex space. This leads...

Full description

Bibliographic Details
Main Author: Albert Wilansky
Format: Article
Language:English
Published: Hindawi Limited 1981-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Subjects:
Online Access:http://dx.doi.org/10.1155/S0161171281000021
Description
Summary:A Mazur space is a locally convex topological vector space X such that every fϵXs is continuous where Xs is the set of sequentially continuous linear functionals on X; Xs is studied when X is of the form C(H), H a topological space, and when X is the weak * dual of a locally convex space. This leads to a new classification of compact T2 spaces H, those for which the weak * dual of C(H) is a Mazur space. An open question about Banach spaces with weak * sequentially compact dual ball is settled: the dual space need not be Mazur.
ISSN:0161-1712
1687-0425