MRI predictors of amyloid pathology: results from the EMIF-AD Multimodal Biomarker Discovery study
Abstract Background With the shift of research focus towards the pre-dementia stage of Alzheimer’s disease (AD), there is an urgent need for reliable, non-invasive biomarkers to predict amyloid pathology. The aim of this study was to assess whether easily obtainable measures from structural MRI, com...
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2018-09-01
|
Series: | Alzheimer’s Research & Therapy |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s13195-018-0428-1 |
id |
doaj-adb96ce37d3740419818576a0bb69a24 |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Mara ten Kate Alberto Redolfi Enrico Peira Isabelle Bos Stephanie J. Vos Rik Vandenberghe Silvy Gabel Jolien Schaeverbeke Philip Scheltens Olivier Blin Jill C. Richardson Regis Bordet Anders Wallin Carl Eckerstrom José Luis Molinuevo Sebastiaan Engelborghs Christine Van Broeckhoven Pablo Martinez-Lage Julius Popp Magdalini Tsolaki Frans R. J. Verhey Alison L. Baird Cristina Legido-Quigley Lars Bertram Valerija Dobricic Henrik Zetterberg Simon Lovestone Johannes Streffer Silvia Bianchetti Gerald P. Novak Jerome Revillard Mark F. Gordon Zhiyong Xie Viktor Wottschel Giovanni Frisoni Pieter Jelle Visser Frederik Barkhof |
spellingShingle |
Mara ten Kate Alberto Redolfi Enrico Peira Isabelle Bos Stephanie J. Vos Rik Vandenberghe Silvy Gabel Jolien Schaeverbeke Philip Scheltens Olivier Blin Jill C. Richardson Regis Bordet Anders Wallin Carl Eckerstrom José Luis Molinuevo Sebastiaan Engelborghs Christine Van Broeckhoven Pablo Martinez-Lage Julius Popp Magdalini Tsolaki Frans R. J. Verhey Alison L. Baird Cristina Legido-Quigley Lars Bertram Valerija Dobricic Henrik Zetterberg Simon Lovestone Johannes Streffer Silvia Bianchetti Gerald P. Novak Jerome Revillard Mark F. Gordon Zhiyong Xie Viktor Wottschel Giovanni Frisoni Pieter Jelle Visser Frederik Barkhof MRI predictors of amyloid pathology: results from the EMIF-AD Multimodal Biomarker Discovery study Alzheimer’s Research & Therapy Alzheimer’s disease Mild cognitive impairment Biomarkers Magnetic resonance imaging Amyloid Machine learning |
author_facet |
Mara ten Kate Alberto Redolfi Enrico Peira Isabelle Bos Stephanie J. Vos Rik Vandenberghe Silvy Gabel Jolien Schaeverbeke Philip Scheltens Olivier Blin Jill C. Richardson Regis Bordet Anders Wallin Carl Eckerstrom José Luis Molinuevo Sebastiaan Engelborghs Christine Van Broeckhoven Pablo Martinez-Lage Julius Popp Magdalini Tsolaki Frans R. J. Verhey Alison L. Baird Cristina Legido-Quigley Lars Bertram Valerija Dobricic Henrik Zetterberg Simon Lovestone Johannes Streffer Silvia Bianchetti Gerald P. Novak Jerome Revillard Mark F. Gordon Zhiyong Xie Viktor Wottschel Giovanni Frisoni Pieter Jelle Visser Frederik Barkhof |
author_sort |
Mara ten Kate |
title |
MRI predictors of amyloid pathology: results from the EMIF-AD Multimodal Biomarker Discovery study |
title_short |
MRI predictors of amyloid pathology: results from the EMIF-AD Multimodal Biomarker Discovery study |
title_full |
MRI predictors of amyloid pathology: results from the EMIF-AD Multimodal Biomarker Discovery study |
title_fullStr |
MRI predictors of amyloid pathology: results from the EMIF-AD Multimodal Biomarker Discovery study |
title_full_unstemmed |
MRI predictors of amyloid pathology: results from the EMIF-AD Multimodal Biomarker Discovery study |
title_sort |
mri predictors of amyloid pathology: results from the emif-ad multimodal biomarker discovery study |
publisher |
BMC |
series |
Alzheimer’s Research & Therapy |
issn |
1758-9193 |
publishDate |
2018-09-01 |
description |
Abstract Background With the shift of research focus towards the pre-dementia stage of Alzheimer’s disease (AD), there is an urgent need for reliable, non-invasive biomarkers to predict amyloid pathology. The aim of this study was to assess whether easily obtainable measures from structural MRI, combined with demographic data, cognitive data and apolipoprotein E (APOE) ε4 genotype, can be used to predict amyloid pathology using machine-learning classification. Methods We examined 810 subjects with structural MRI data and amyloid markers from the European Medical Information Framework for Alzheimer’s Disease Multimodal Biomarker Discovery study, including subjects with normal cognition (CN, n = 337, age 66.5 ± 7.2, 50% female, 27% amyloid positive), mild cognitive impairment (MCI, n = 375, age 69.1 ± 7.5, 53% female, 63% amyloid positive) and AD dementia (n = 98, age 67.0 ± 7.7, 48% female, 97% amyloid positive). Structural MRI scans were visually assessed and Freesurfer was used to obtain subcortical volumes, cortical thickness and surface area measures. We first assessed univariate associations between MRI measures and amyloid pathology using mixed models. Next, we developed and tested an automated classifier using demographic, cognitive, MRI and APOE ε4 information to predict amyloid pathology. A support vector machine (SVM) with nested 10-fold cross-validation was applied to identify a set of markers best discriminating between amyloid positive and amyloid negative subjects. Results In univariate associations, amyloid pathology was associated with lower subcortical volumes and thinner cortex in AD-signature regions in CN and MCI. The multi-variable SVM classifier provided an area under the curve (AUC) of 0.81 ± 0.07 in MCI and an AUC of 0.74 ± 0.08 in CN. In CN, selected features for the classifier included APOE ε4, age, memory scores and several MRI measures such as hippocampus, amygdala and accumbens volumes and cortical thickness in temporal and parahippocampal regions. In MCI, the classifier including demographic and APOE ε4 information did not improve after additionally adding imaging measures. Conclusions Amyloid pathology is associated with changes in structural MRI measures in CN and MCI. An automated classifier based on clinical, imaging and APOE ε4 data can identify the presence of amyloid pathology with a moderate level of accuracy. These results could be used in clinical trials to pre-screen subjects for anti-amyloid therapies. |
topic |
Alzheimer’s disease Mild cognitive impairment Biomarkers Magnetic resonance imaging Amyloid Machine learning |
url |
http://link.springer.com/article/10.1186/s13195-018-0428-1 |
work_keys_str_mv |
AT maratenkate mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy AT albertoredolfi mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy AT enricopeira mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy AT isabellebos mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy AT stephaniejvos mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy AT rikvandenberghe mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy AT silvygabel mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy AT jolienschaeverbeke mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy AT philipscheltens mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy AT olivierblin mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy AT jillcrichardson mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy AT regisbordet mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy AT anderswallin mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy AT carleckerstrom mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy AT joseluismolinuevo mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy AT sebastiaanengelborghs mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy AT christinevanbroeckhoven mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy AT pablomartinezlage mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy AT juliuspopp mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy AT magdalinitsolaki mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy AT fransrjverhey mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy AT alisonlbaird mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy AT cristinalegidoquigley mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy AT larsbertram mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy AT valerijadobricic mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy AT henrikzetterberg mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy AT simonlovestone mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy AT johannesstreffer mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy AT silviabianchetti mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy AT geraldpnovak mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy AT jeromerevillard mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy AT markfgordon mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy AT zhiyongxie mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy AT viktorwottschel mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy AT giovannifrisoni mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy AT pieterjellevisser mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy AT frederikbarkhof mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy |
_version_ |
1724932614894125056 |
spelling |
doaj-adb96ce37d3740419818576a0bb69a242020-11-25T02:06:41ZengBMCAlzheimer’s Research & Therapy1758-91932018-09-0110111210.1186/s13195-018-0428-1MRI predictors of amyloid pathology: results from the EMIF-AD Multimodal Biomarker Discovery studyMara ten Kate0Alberto Redolfi1Enrico Peira2Isabelle Bos3Stephanie J. Vos4Rik Vandenberghe5Silvy Gabel6Jolien Schaeverbeke7Philip Scheltens8Olivier Blin9Jill C. Richardson10Regis Bordet11Anders Wallin12Carl Eckerstrom13José Luis Molinuevo14Sebastiaan Engelborghs15Christine Van Broeckhoven16Pablo Martinez-Lage17Julius Popp18Magdalini Tsolaki19Frans R. J. Verhey20Alison L. Baird21Cristina Legido-Quigley22Lars Bertram23Valerija Dobricic24Henrik Zetterberg25Simon Lovestone26Johannes Streffer27Silvia Bianchetti28Gerald P. Novak29Jerome Revillard30Mark F. Gordon31Zhiyong Xie32Viktor Wottschel33Giovanni Frisoni34Pieter Jelle Visser35Frederik Barkhof36Alzheimer Center & Department of Neurology, VU University Medical CenterLaboratory of Epidemiology & Neuroimaging, IRCCS San Giovanni di Dio FatebenefratelliLaboratory of Epidemiology & Neuroimaging, IRCCS San Giovanni di Dio FatebenefratelliAlzheimer Centrum Limburg, Department of Psychiatry and Neuropsychology, Maastricht UniversityAlzheimer Centrum Limburg, Department of Psychiatry and Neuropsychology, Maastricht UniversityUniversity Hospital LeuvenUniversity Hospital LeuvenUniversity Hospital LeuvenAlzheimer Center & Department of Neurology, VU University Medical CenterAP-HM, CHU Timone, CIC CPCET, Service de Pharmacologie Clinique et PharmacovigilanceNeurosciences Therapeutic Area Unit, GlaxoSmithKline R&DU1171 Inserm, CHU Lille, Degenerative and Vascular Cognitive Disorders, University of LilleSahlgrenska Academy, Institute of Neuroscience and Physiology, Section for Psychiatry and Neurochemistry, University of GothenburgSahlgrenska Academy, Institute of Neuroscience and Physiology, Section for Psychiatry and Neurochemistry, University of GothenburgBarcelona βeta Brain Research Center, Pasqual Maragall FoundationReference Center for Biological Markers of Dementia (BIODEM), Institute Born-Bunge, University of AntwerpNeurodegenerative Brain Diseases, Center for Molecular Neurology, VIBDepartment of Neurology, Center for Research and Advanced Therapies, CITA-Alzheimer FoundationDepartment of Psychiatry, University Hospital of LausanneMemory and Dementia Center, 3rd Department of Neurology, “G Papanicolau” General Hospital, Aristotle University of ThessalonikiAlzheimer Centrum Limburg, Department of Psychiatry and Neuropsychology, Maastricht UniversityUniversity of OxfordKing’s College LondonLübeck Interdisciplinary Platform for Genome Analytics, University of LübeckLübeck Interdisciplinary Platform for Genome Analytics, University of LübeckDepartment of Psychiatry and Neurochemistry, University of GothenburgUniversity of OxfordReference Center for Biological Markers of Dementia (BIODEM), Institute Born-Bunge, University of AntwerpLaboratory of Epidemiology & Neuroimaging, IRCCS San Giovanni di Dio FatebenefratelliJanssen Pharmaceutical Research and DevelopmentMAATTeva Pharmaceuticals, Inc.Worldwide Research and Development, Pfizer IncDepartment of Radiology and Nuclear Medicine, VUMCLaboratory of Epidemiology & Neuroimaging, IRCCS San Giovanni di Dio FatebenefratelliAlzheimer Center & Department of Neurology, VU University Medical CenterDepartment of Radiology and Nuclear Medicine, VUMCAbstract Background With the shift of research focus towards the pre-dementia stage of Alzheimer’s disease (AD), there is an urgent need for reliable, non-invasive biomarkers to predict amyloid pathology. The aim of this study was to assess whether easily obtainable measures from structural MRI, combined with demographic data, cognitive data and apolipoprotein E (APOE) ε4 genotype, can be used to predict amyloid pathology using machine-learning classification. Methods We examined 810 subjects with structural MRI data and amyloid markers from the European Medical Information Framework for Alzheimer’s Disease Multimodal Biomarker Discovery study, including subjects with normal cognition (CN, n = 337, age 66.5 ± 7.2, 50% female, 27% amyloid positive), mild cognitive impairment (MCI, n = 375, age 69.1 ± 7.5, 53% female, 63% amyloid positive) and AD dementia (n = 98, age 67.0 ± 7.7, 48% female, 97% amyloid positive). Structural MRI scans were visually assessed and Freesurfer was used to obtain subcortical volumes, cortical thickness and surface area measures. We first assessed univariate associations between MRI measures and amyloid pathology using mixed models. Next, we developed and tested an automated classifier using demographic, cognitive, MRI and APOE ε4 information to predict amyloid pathology. A support vector machine (SVM) with nested 10-fold cross-validation was applied to identify a set of markers best discriminating between amyloid positive and amyloid negative subjects. Results In univariate associations, amyloid pathology was associated with lower subcortical volumes and thinner cortex in AD-signature regions in CN and MCI. The multi-variable SVM classifier provided an area under the curve (AUC) of 0.81 ± 0.07 in MCI and an AUC of 0.74 ± 0.08 in CN. In CN, selected features for the classifier included APOE ε4, age, memory scores and several MRI measures such as hippocampus, amygdala and accumbens volumes and cortical thickness in temporal and parahippocampal regions. In MCI, the classifier including demographic and APOE ε4 information did not improve after additionally adding imaging measures. Conclusions Amyloid pathology is associated with changes in structural MRI measures in CN and MCI. An automated classifier based on clinical, imaging and APOE ε4 data can identify the presence of amyloid pathology with a moderate level of accuracy. These results could be used in clinical trials to pre-screen subjects for anti-amyloid therapies.http://link.springer.com/article/10.1186/s13195-018-0428-1Alzheimer’s diseaseMild cognitive impairmentBiomarkersMagnetic resonance imagingAmyloidMachine learning |