MRI predictors of amyloid pathology: results from the EMIF-AD Multimodal Biomarker Discovery study

Abstract Background With the shift of research focus towards the pre-dementia stage of Alzheimer’s disease (AD), there is an urgent need for reliable, non-invasive biomarkers to predict amyloid pathology. The aim of this study was to assess whether easily obtainable measures from structural MRI, com...

Full description

Bibliographic Details
Main Authors: Mara ten Kate, Alberto Redolfi, Enrico Peira, Isabelle Bos, Stephanie J. Vos, Rik Vandenberghe, Silvy Gabel, Jolien Schaeverbeke, Philip Scheltens, Olivier Blin, Jill C. Richardson, Regis Bordet, Anders Wallin, Carl Eckerstrom, José Luis Molinuevo, Sebastiaan Engelborghs, Christine Van Broeckhoven, Pablo Martinez-Lage, Julius Popp, Magdalini Tsolaki, Frans R. J. Verhey, Alison L. Baird, Cristina Legido-Quigley, Lars Bertram, Valerija Dobricic, Henrik Zetterberg, Simon Lovestone, Johannes Streffer, Silvia Bianchetti, Gerald P. Novak, Jerome Revillard, Mark F. Gordon, Zhiyong Xie, Viktor Wottschel, Giovanni Frisoni, Pieter Jelle Visser, Frederik Barkhof
Format: Article
Language:English
Published: BMC 2018-09-01
Series:Alzheimer’s Research & Therapy
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13195-018-0428-1
id doaj-adb96ce37d3740419818576a0bb69a24
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Mara ten Kate
Alberto Redolfi
Enrico Peira
Isabelle Bos
Stephanie J. Vos
Rik Vandenberghe
Silvy Gabel
Jolien Schaeverbeke
Philip Scheltens
Olivier Blin
Jill C. Richardson
Regis Bordet
Anders Wallin
Carl Eckerstrom
José Luis Molinuevo
Sebastiaan Engelborghs
Christine Van Broeckhoven
Pablo Martinez-Lage
Julius Popp
Magdalini Tsolaki
Frans R. J. Verhey
Alison L. Baird
Cristina Legido-Quigley
Lars Bertram
Valerija Dobricic
Henrik Zetterberg
Simon Lovestone
Johannes Streffer
Silvia Bianchetti
Gerald P. Novak
Jerome Revillard
Mark F. Gordon
Zhiyong Xie
Viktor Wottschel
Giovanni Frisoni
Pieter Jelle Visser
Frederik Barkhof
spellingShingle Mara ten Kate
Alberto Redolfi
Enrico Peira
Isabelle Bos
Stephanie J. Vos
Rik Vandenberghe
Silvy Gabel
Jolien Schaeverbeke
Philip Scheltens
Olivier Blin
Jill C. Richardson
Regis Bordet
Anders Wallin
Carl Eckerstrom
José Luis Molinuevo
Sebastiaan Engelborghs
Christine Van Broeckhoven
Pablo Martinez-Lage
Julius Popp
Magdalini Tsolaki
Frans R. J. Verhey
Alison L. Baird
Cristina Legido-Quigley
Lars Bertram
Valerija Dobricic
Henrik Zetterberg
Simon Lovestone
Johannes Streffer
Silvia Bianchetti
Gerald P. Novak
Jerome Revillard
Mark F. Gordon
Zhiyong Xie
Viktor Wottschel
Giovanni Frisoni
Pieter Jelle Visser
Frederik Barkhof
MRI predictors of amyloid pathology: results from the EMIF-AD Multimodal Biomarker Discovery study
Alzheimer’s Research & Therapy
Alzheimer’s disease
Mild cognitive impairment
Biomarkers
Magnetic resonance imaging
Amyloid
Machine learning
author_facet Mara ten Kate
Alberto Redolfi
Enrico Peira
Isabelle Bos
Stephanie J. Vos
Rik Vandenberghe
Silvy Gabel
Jolien Schaeverbeke
Philip Scheltens
Olivier Blin
Jill C. Richardson
Regis Bordet
Anders Wallin
Carl Eckerstrom
José Luis Molinuevo
Sebastiaan Engelborghs
Christine Van Broeckhoven
Pablo Martinez-Lage
Julius Popp
Magdalini Tsolaki
Frans R. J. Verhey
Alison L. Baird
Cristina Legido-Quigley
Lars Bertram
Valerija Dobricic
Henrik Zetterberg
Simon Lovestone
Johannes Streffer
Silvia Bianchetti
Gerald P. Novak
Jerome Revillard
Mark F. Gordon
Zhiyong Xie
Viktor Wottschel
Giovanni Frisoni
Pieter Jelle Visser
Frederik Barkhof
author_sort Mara ten Kate
title MRI predictors of amyloid pathology: results from the EMIF-AD Multimodal Biomarker Discovery study
title_short MRI predictors of amyloid pathology: results from the EMIF-AD Multimodal Biomarker Discovery study
title_full MRI predictors of amyloid pathology: results from the EMIF-AD Multimodal Biomarker Discovery study
title_fullStr MRI predictors of amyloid pathology: results from the EMIF-AD Multimodal Biomarker Discovery study
title_full_unstemmed MRI predictors of amyloid pathology: results from the EMIF-AD Multimodal Biomarker Discovery study
title_sort mri predictors of amyloid pathology: results from the emif-ad multimodal biomarker discovery study
publisher BMC
series Alzheimer’s Research & Therapy
issn 1758-9193
publishDate 2018-09-01
description Abstract Background With the shift of research focus towards the pre-dementia stage of Alzheimer’s disease (AD), there is an urgent need for reliable, non-invasive biomarkers to predict amyloid pathology. The aim of this study was to assess whether easily obtainable measures from structural MRI, combined with demographic data, cognitive data and apolipoprotein E (APOE) ε4 genotype, can be used to predict amyloid pathology using machine-learning classification. Methods We examined 810 subjects with structural MRI data and amyloid markers from the European Medical Information Framework for Alzheimer’s Disease Multimodal Biomarker Discovery study, including subjects with normal cognition (CN, n = 337, age 66.5 ± 7.2, 50% female, 27% amyloid positive), mild cognitive impairment (MCI, n = 375, age 69.1 ± 7.5, 53% female, 63% amyloid positive) and AD dementia (n = 98, age 67.0 ± 7.7, 48% female, 97% amyloid positive). Structural MRI scans were visually assessed and Freesurfer was used to obtain subcortical volumes, cortical thickness and surface area measures. We first assessed univariate associations between MRI measures and amyloid pathology using mixed models. Next, we developed and tested an automated classifier using demographic, cognitive, MRI and APOE ε4 information to predict amyloid pathology. A support vector machine (SVM) with nested 10-fold cross-validation was applied to identify a set of markers best discriminating between amyloid positive and amyloid negative subjects. Results In univariate associations, amyloid pathology was associated with lower subcortical volumes and thinner cortex in AD-signature regions in CN and MCI. The multi-variable SVM classifier provided an area under the curve (AUC) of 0.81 ± 0.07 in MCI and an AUC of 0.74 ± 0.08 in CN. In CN, selected features for the classifier included APOE ε4, age, memory scores and several MRI measures such as hippocampus, amygdala and accumbens volumes and cortical thickness in temporal and parahippocampal regions. In MCI, the classifier including demographic and APOE ε4 information did not improve after additionally adding imaging measures. Conclusions Amyloid pathology is associated with changes in structural MRI measures in CN and MCI. An automated classifier based on clinical, imaging and APOE ε4 data can identify the presence of amyloid pathology with a moderate level of accuracy. These results could be used in clinical trials to pre-screen subjects for anti-amyloid therapies.
topic Alzheimer’s disease
Mild cognitive impairment
Biomarkers
Magnetic resonance imaging
Amyloid
Machine learning
url http://link.springer.com/article/10.1186/s13195-018-0428-1
work_keys_str_mv AT maratenkate mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy
AT albertoredolfi mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy
AT enricopeira mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy
AT isabellebos mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy
AT stephaniejvos mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy
AT rikvandenberghe mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy
AT silvygabel mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy
AT jolienschaeverbeke mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy
AT philipscheltens mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy
AT olivierblin mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy
AT jillcrichardson mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy
AT regisbordet mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy
AT anderswallin mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy
AT carleckerstrom mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy
AT joseluismolinuevo mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy
AT sebastiaanengelborghs mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy
AT christinevanbroeckhoven mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy
AT pablomartinezlage mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy
AT juliuspopp mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy
AT magdalinitsolaki mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy
AT fransrjverhey mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy
AT alisonlbaird mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy
AT cristinalegidoquigley mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy
AT larsbertram mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy
AT valerijadobricic mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy
AT henrikzetterberg mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy
AT simonlovestone mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy
AT johannesstreffer mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy
AT silviabianchetti mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy
AT geraldpnovak mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy
AT jeromerevillard mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy
AT markfgordon mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy
AT zhiyongxie mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy
AT viktorwottschel mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy
AT giovannifrisoni mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy
AT pieterjellevisser mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy
AT frederikbarkhof mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy
_version_ 1724932614894125056
spelling doaj-adb96ce37d3740419818576a0bb69a242020-11-25T02:06:41ZengBMCAlzheimer’s Research & Therapy1758-91932018-09-0110111210.1186/s13195-018-0428-1MRI predictors of amyloid pathology: results from the EMIF-AD Multimodal Biomarker Discovery studyMara ten Kate0Alberto Redolfi1Enrico Peira2Isabelle Bos3Stephanie J. Vos4Rik Vandenberghe5Silvy Gabel6Jolien Schaeverbeke7Philip Scheltens8Olivier Blin9Jill C. Richardson10Regis Bordet11Anders Wallin12Carl Eckerstrom13José Luis Molinuevo14Sebastiaan Engelborghs15Christine Van Broeckhoven16Pablo Martinez-Lage17Julius Popp18Magdalini Tsolaki19Frans R. J. Verhey20Alison L. Baird21Cristina Legido-Quigley22Lars Bertram23Valerija Dobricic24Henrik Zetterberg25Simon Lovestone26Johannes Streffer27Silvia Bianchetti28Gerald P. Novak29Jerome Revillard30Mark F. Gordon31Zhiyong Xie32Viktor Wottschel33Giovanni Frisoni34Pieter Jelle Visser35Frederik Barkhof36Alzheimer Center & Department of Neurology, VU University Medical CenterLaboratory of Epidemiology & Neuroimaging, IRCCS San Giovanni di Dio FatebenefratelliLaboratory of Epidemiology & Neuroimaging, IRCCS San Giovanni di Dio FatebenefratelliAlzheimer Centrum Limburg, Department of Psychiatry and Neuropsychology, Maastricht UniversityAlzheimer Centrum Limburg, Department of Psychiatry and Neuropsychology, Maastricht UniversityUniversity Hospital LeuvenUniversity Hospital LeuvenUniversity Hospital LeuvenAlzheimer Center & Department of Neurology, VU University Medical CenterAP-HM, CHU Timone, CIC CPCET, Service de Pharmacologie Clinique et PharmacovigilanceNeurosciences Therapeutic Area Unit, GlaxoSmithKline R&DU1171 Inserm, CHU Lille, Degenerative and Vascular Cognitive Disorders, University of LilleSahlgrenska Academy, Institute of Neuroscience and Physiology, Section for Psychiatry and Neurochemistry, University of GothenburgSahlgrenska Academy, Institute of Neuroscience and Physiology, Section for Psychiatry and Neurochemistry, University of GothenburgBarcelona βeta Brain Research Center, Pasqual Maragall FoundationReference Center for Biological Markers of Dementia (BIODEM), Institute Born-Bunge, University of AntwerpNeurodegenerative Brain Diseases, Center for Molecular Neurology, VIBDepartment of Neurology, Center for Research and Advanced Therapies, CITA-Alzheimer FoundationDepartment of Psychiatry, University Hospital of LausanneMemory and Dementia Center, 3rd Department of Neurology, “G Papanicolau” General Hospital, Aristotle University of ThessalonikiAlzheimer Centrum Limburg, Department of Psychiatry and Neuropsychology, Maastricht UniversityUniversity of OxfordKing’s College LondonLübeck Interdisciplinary Platform for Genome Analytics, University of LübeckLübeck Interdisciplinary Platform for Genome Analytics, University of LübeckDepartment of Psychiatry and Neurochemistry, University of GothenburgUniversity of OxfordReference Center for Biological Markers of Dementia (BIODEM), Institute Born-Bunge, University of AntwerpLaboratory of Epidemiology & Neuroimaging, IRCCS San Giovanni di Dio FatebenefratelliJanssen Pharmaceutical Research and DevelopmentMAATTeva Pharmaceuticals, Inc.Worldwide Research and Development, Pfizer IncDepartment of Radiology and Nuclear Medicine, VUMCLaboratory of Epidemiology & Neuroimaging, IRCCS San Giovanni di Dio FatebenefratelliAlzheimer Center & Department of Neurology, VU University Medical CenterDepartment of Radiology and Nuclear Medicine, VUMCAbstract Background With the shift of research focus towards the pre-dementia stage of Alzheimer’s disease (AD), there is an urgent need for reliable, non-invasive biomarkers to predict amyloid pathology. The aim of this study was to assess whether easily obtainable measures from structural MRI, combined with demographic data, cognitive data and apolipoprotein E (APOE) ε4 genotype, can be used to predict amyloid pathology using machine-learning classification. Methods We examined 810 subjects with structural MRI data and amyloid markers from the European Medical Information Framework for Alzheimer’s Disease Multimodal Biomarker Discovery study, including subjects with normal cognition (CN, n = 337, age 66.5 ± 7.2, 50% female, 27% amyloid positive), mild cognitive impairment (MCI, n = 375, age 69.1 ± 7.5, 53% female, 63% amyloid positive) and AD dementia (n = 98, age 67.0 ± 7.7, 48% female, 97% amyloid positive). Structural MRI scans were visually assessed and Freesurfer was used to obtain subcortical volumes, cortical thickness and surface area measures. We first assessed univariate associations between MRI measures and amyloid pathology using mixed models. Next, we developed and tested an automated classifier using demographic, cognitive, MRI and APOE ε4 information to predict amyloid pathology. A support vector machine (SVM) with nested 10-fold cross-validation was applied to identify a set of markers best discriminating between amyloid positive and amyloid negative subjects. Results In univariate associations, amyloid pathology was associated with lower subcortical volumes and thinner cortex in AD-signature regions in CN and MCI. The multi-variable SVM classifier provided an area under the curve (AUC) of 0.81 ± 0.07 in MCI and an AUC of 0.74 ± 0.08 in CN. In CN, selected features for the classifier included APOE ε4, age, memory scores and several MRI measures such as hippocampus, amygdala and accumbens volumes and cortical thickness in temporal and parahippocampal regions. In MCI, the classifier including demographic and APOE ε4 information did not improve after additionally adding imaging measures. Conclusions Amyloid pathology is associated with changes in structural MRI measures in CN and MCI. An automated classifier based on clinical, imaging and APOE ε4 data can identify the presence of amyloid pathology with a moderate level of accuracy. These results could be used in clinical trials to pre-screen subjects for anti-amyloid therapies.http://link.springer.com/article/10.1186/s13195-018-0428-1Alzheimer’s diseaseMild cognitive impairmentBiomarkersMagnetic resonance imagingAmyloidMachine learning