Molecular Mechanism of Binding between 17β-Estradiol and DNA

Although 17β-estradiol (E2) is a natural molecule involved in the endocrine system, its widespread use in various applications has resulted in its accumulation in the environment and its classification as an endocrine-disrupting molecule. These molecules can interfere with the hormonal system, and h...

Full description

Bibliographic Details
Main Authors: Tamsyn A. Hilder, Justin M. Hodgkiss
Format: Article
Language:English
Published: Elsevier 2017-01-01
Series:Computational and Structural Biotechnology Journal
Online Access:http://www.sciencedirect.com/science/article/pii/S2001037016300800
Description
Summary:Although 17β-estradiol (E2) is a natural molecule involved in the endocrine system, its widespread use in various applications has resulted in its accumulation in the environment and its classification as an endocrine-disrupting molecule. These molecules can interfere with the hormonal system, and have been linked to various adverse effects such as the proliferation of breast cancer. It has been proposed that E2 could contribute to breast cancer by the induction of DNA damage. Mass spectrometry has demonstrated that E2 can bind to DNA but the mechanism by which E2 interacts with DNA has yet to be elucidated. Using all-atom molecular dynamics simulations, we demonstrate that E2 intercalates (inserts between two successive DNA base pairs) in DNA at the location specific to estrogen receptor binding, known as the estrogen response element (ERE), and to other random sequences of DNA. Our results suggest that excess E2 has the potential to disrupt processes in the body which rely on binding to DNA, such as the binding of the estrogen receptor to the ERE and the activity of enzymes that bind DNA, and could lead to DNA damage. Keywords: 17β-estradiol, Estrogen response element, Molecular dynamics, Intercalation
ISSN:2001-0370