Summary: | Motivation: In early stage of therapeutics, several structure and ligand-based in-silico approaches have aided the modern drug discovery and design. However, such techniques are limited by availability of resolved 3D structures of targets and ligands. At the same time the growing concern of drug resistivity not only demands for new drugs but also the judicious use of presently available drugs. In such a scenario, the utilization of the already available drugs of a target molecule over the different homologous target of wider range of organisms is the better perspective for treatment. This requires confirmation of structural similarity of the targets (enzyme and protein targets) in those organisms.
Results: In the present study, based on the structural similarity of the target enzymes shared by different pathogenic micro-organisms, we have reviewed to gain an in-silico perspective of their efficacy in targeting a wider subset of organisms with few available drugs marketed for those. The results suggest efficient binding affinity of such drugs for the enzymes of organisms belonging to the cluster formed on the basis of structurally similarity.
Implementation: Such an approach can be adopted to utilize the presently available drugs for a wider range of pathogenic micro-organisms.
Supplementary Information: Available
|