Summary: | In treatments of solid tumors, adoptive transfer of ex vivo expanded natural killer (NK) cells has dawned as a new paradigm. Compared with cytotoxic T lymphocytes, NK cells take a unique position targeting tumor cells that evade the host immune surveillance by down-regulating self-antigen presentation. Recent findings highlighted that NK cells can even target cancer stem cells. The efficacy of allogeneic NK cells has been widely investigated in the treatment of hematologic malignancies. In solid tumors, both autologous and allogeneic NK cells have demonstrated potential efficacy. In allogeneic NK cell therapy, the mismatch between the killer cell immunoglobulin-like receptor (KIR) and human leukocyte antigen (HLA) can be harnessed to increase the antitumor activity. However, the allogeneic NK cells cause more adverse events and can be rejected by the host immune system after repeated injections. In this regard, the autologous NK cell therapy is safer. This article reviews the published results of clinical trials and discusses strategies to enhance the efficacy of the NK cell therapy. The difference in immunophenotype of the ex vivo expanded NK cells resulted from different culture methods may affect the final efficacy. Furthermore, currently available standard anticancer therapy, molecularly targeted agents, and checkpoint inhibitors may directly or indirectly enhance the efficacy of NK cell therapy. A recent study discovered that NK cell specific genetic defects are closely associated with the tumor immune microenvironment that determines clinical outcomes. This finding warrants future investigations to find the implication of NK cell specific genetic defects in cancer development and treatment, and NK cell deficiency syndrome should be revisited to enhance our understanding. Overall, it is clear that NK cell therapy is safe and promises a new paradigm for the treatment of solid tumors.
|