Summary: | In this paper, a new principle biosensor for non-invasive monitoring of theregulation of photosynthetic metabolism based on quantitative measurement of delayedfluorescence (DF) is developed. The biosensor, which uses light-emitting diode lattice asexcitation light source and a compact Single Photon Counting Module to collect DF signal,is portable and can evaluate plant photosynthesis capacity in vivo. Compared with itsprimary version in our previous report, the biosensor can better control environmentalfactors. Moreover, the improved biosensor can automatically complete the measurements oflight and CO2 response curves of DF intensity. In the experimental study, the testing of theimproved biosensor has been made in soybean (Glycine max Zaoshu No. 18) seedlingstreated with NaHSO3 to induce changes in seedlings growth and photosynthetic metabolism.Contrast evaluations of seedlings photosynthesis were made from measurements of netphotosynthesis rate (Pn) based on consumption of CO2 in tested plants. Current testingresults have demonstrated that the improved biosensor can accurately determine theregulatory effects of NaHSO3 on photosynthetic metabolism. Therefore, the biosensorpresented here could be potential useful for real-time monitoring the regulatory effects ofplant growth regulators (PGRs) and other exogenous chemical factors on plant growth andphotosynthetic metabolism.
|