EMG pattern recognition compared to foot control of the DEKA Arm.

INTRODUCTION:EMG pattern recognition control (EMG-PR) is a promising option for control of upper limb prostheses with multiple degrees of freedom (DOF). The purposes of this study were to 1) evaluate outcomes of EMG-PR and inertial measurement units (IMU) control of the DEKA Arm as compared to perso...

Full description

Bibliographic Details
Main Authors: Linda J Resnik, Frantzy Acluche, Matthew Borgia, Jill Cancio, Gail Latlief, Samuel Phillips, Nicole Sasson
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2018-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC6193636?pdf=render
Description
Summary:INTRODUCTION:EMG pattern recognition control (EMG-PR) is a promising option for control of upper limb prostheses with multiple degrees of freedom (DOF). The purposes of this study were to 1) evaluate outcomes of EMG-PR and inertial measurement units (IMU) control of the DEKA Arm as compared to personal prosthesis; and 2) compare outcomes of EMG-PR to IMU control of DEKA Arm. METHODS:This was a quasi-experimental, multi-site study with repeated measures that compared non-randomized groups using two types of controls: EMG-PR and IMUs. Subjects (N = 36) were transradial (TR) and transhumeral (TH) amputees. Outcomes were collected at Baseline (using personal prosthesis), and after in-laboratory training (Part A), and home use (Part B). Data was compared to personal prosthesis, stratified by amputation level and control type. Outcomes were also compared by control type. RESULTS:The EMG-PR group had greater prosthesis use after Part A, but worse dexterity, lower satisfaction, and slower activity performance compared to Baseline; the IMU group had slower activity performance. After Part B, the EMG-PR group had less perceived activity difficulty; the IMU group had improved activity performance, improved disability and activity difficulty, but slower performance. No differences were observed for TH group by control type in Part A or B. The TR group using EMG-PR had worse dexterity (Parts A & B), and activity performance (Part A) as compared to IMU users. DISCUSSION/CONCLUSION:Findings suggest that for the TR group that IMUs are a more effective control method for the DEKA Arm as compared to the EMG-PR prototypes employed in this study. Further research is needed to refine the EMG-PR systems for multi-DOF devices. Future studies should include a larger sample of TH amputees. TRIAL REGISTRATION:ClinicalTrials.gov NCT01551420.
ISSN:1932-6203