Characterization of Cercospora nicotianae Hypothetical Proteins in Cercosporin Resistance.

The photoactivated toxin, cercosporin, produced by Cercospora species, plays an important role in pathogenesis of this fungus to host plants. Cercosporin has almost universal toxicity to cells due to its production of reactive oxygen species including singlet oxygen. For that reason, Cercospora spec...

Full description

Bibliographic Details
Main Authors: Aydin Beseli, Roslyn Noar, Margaret E Daub
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2015-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC4608573?pdf=render
Description
Summary:The photoactivated toxin, cercosporin, produced by Cercospora species, plays an important role in pathogenesis of this fungus to host plants. Cercosporin has almost universal toxicity to cells due to its production of reactive oxygen species including singlet oxygen. For that reason, Cercospora species, which are highly resistant to their own toxin, are good candidates to identify genes for resistance to cercosporin and to the reactive oxygen species it produces. In previous research, the zinc cluster transcription factor CRG1 (cercosporin resistance gene 1) was found to be crucial for Cercospora species' resistance against cercosporin, and subtractive hybridization analysis identified 185 genes differentially expressed between Cercospora nicotianae wild type (wt) and a crg1 mutant. The focus of this work was to identify and characterize the hypothetical proteins that were identified in the Cercospora nicotianae subtractive library as potential resistance factors. Quantitative RT-PCR analysis of the 20 genes encoding hypothetical proteins showed that two, 24cF and 71cR, were induced under conditions of cercosporin toxicity, suggesting a role in resistance. Transformation and expression of 24cF and 71cR in the cercosporin-sensitive fungus, Neurospora crassa, showed that 71cR provided increased resistance to cercosporin toxicity, whereas no significant increase was observed in 24cF transformants. Gene disruption was used to generate C. nicotianae 71cR mutants; these mutants did not differ from wt C. nicotianae in cercosporin resistance or production. Quantitative RT-PCR analysis showed induction of other resistance genes in the 71cR mutant that may compensate for the loss of 71cR. Analysis of 71cR conserved domains and secondary and tertiary structure identify the protein as having an NTF2-like superfamily DUF1348 domain with unknown function, to be intracellular and localized in the cytosol, and to have similarities to proteins in the steroid delta-isomerase family.
ISSN:1932-6203