Existence Results for a Fully Fourth-Order Boundary Value Problem
We discuss the existence of solution for the fully fourth-order boundary value problem u(4)=f(t,u,u′,u′′,u′′′), 0≤t≤1, u(0)=u(1)=u′′(0)=u′′(1)=0. A growth condition on f guaranteeing the existence of solution is presented. The discussion is based on the Fourier analysis method and Leray-Schauder fix...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2013-01-01
|
Series: | Journal of Function Spaces and Applications |
Online Access: | http://dx.doi.org/10.1155/2013/641617 |
Summary: | We discuss the existence of solution for the fully fourth-order boundary value problem u(4)=f(t,u,u′,u′′,u′′′), 0≤t≤1, u(0)=u(1)=u′′(0)=u′′(1)=0. A growth condition on f guaranteeing the existence of solution is presented. The discussion is based on the Fourier analysis method and Leray-Schauder fixed point theorem. |
---|---|
ISSN: | 0972-6802 1758-4965 |