Local analytic solutions to some nonhomogeneous problems with $p$-Laplacian

Applying the Briot-Bouquet theorem we show that there exists an unique analytic solution to the equation $\left( t^{n-1}\Phi _{p}\left( y^{\prime}\right) \right) ^{\prime }+(-1)^{i}t^{n-1}\Phi _{q}(y)=0$, on $(0,~a)$, where $\Phi _{r}(y):=\left\vert y\right\vert ^{r-1}y$, $0<r,p,q\in R^{+}$, $i=0...

Full description

Bibliographic Details
Main Author: Gabriella Bognár
Format: Article
Language:English
Published: University of Szeged 2008-07-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=319
id doaj-ad010e7e7d1a4e93bfbf21ed041ba60d
record_format Article
spelling doaj-ad010e7e7d1a4e93bfbf21ed041ba60d2021-07-14T07:21:19ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38751417-38752008-07-01200741810.14232/ejqtde.2007.7.4319Local analytic solutions to some nonhomogeneous problems with $p$-LaplacianGabriella Bognár0University of Miskolc, Miskolc-Egyetemváros, HungaryApplying the Briot-Bouquet theorem we show that there exists an unique analytic solution to the equation $\left( t^{n-1}\Phi _{p}\left( y^{\prime}\right) \right) ^{\prime }+(-1)^{i}t^{n-1}\Phi _{q}(y)=0$, on $(0,~a)$, where $\Phi _{r}(y):=\left\vert y\right\vert ^{r-1}y$, $0<r,p,q\in R^{+}$, $i=0,1$, $1\leq n\in N,\ a$ is a small positive real number. The initial conditions to be added to the equation are $y(0)=A\neq 0$, $y^{\prime}(0)=0$, for any real number $A$. We present a method how the solution can be expanded in a power series for near zero.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=319
collection DOAJ
language English
format Article
sources DOAJ
author Gabriella Bognár
spellingShingle Gabriella Bognár
Local analytic solutions to some nonhomogeneous problems with $p$-Laplacian
Electronic Journal of Qualitative Theory of Differential Equations
author_facet Gabriella Bognár
author_sort Gabriella Bognár
title Local analytic solutions to some nonhomogeneous problems with $p$-Laplacian
title_short Local analytic solutions to some nonhomogeneous problems with $p$-Laplacian
title_full Local analytic solutions to some nonhomogeneous problems with $p$-Laplacian
title_fullStr Local analytic solutions to some nonhomogeneous problems with $p$-Laplacian
title_full_unstemmed Local analytic solutions to some nonhomogeneous problems with $p$-Laplacian
title_sort local analytic solutions to some nonhomogeneous problems with $p$-laplacian
publisher University of Szeged
series Electronic Journal of Qualitative Theory of Differential Equations
issn 1417-3875
1417-3875
publishDate 2008-07-01
description Applying the Briot-Bouquet theorem we show that there exists an unique analytic solution to the equation $\left( t^{n-1}\Phi _{p}\left( y^{\prime}\right) \right) ^{\prime }+(-1)^{i}t^{n-1}\Phi _{q}(y)=0$, on $(0,~a)$, where $\Phi _{r}(y):=\left\vert y\right\vert ^{r-1}y$, $0<r,p,q\in R^{+}$, $i=0,1$, $1\leq n\in N,\ a$ is a small positive real number. The initial conditions to be added to the equation are $y(0)=A\neq 0$, $y^{\prime}(0)=0$, for any real number $A$. We present a method how the solution can be expanded in a power series for near zero.
url http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=319
work_keys_str_mv AT gabriellabognar localanalyticsolutionstosomenonhomogeneousproblemswithplaplacian
_version_ 1721303857444683776