Local analytic solutions to some nonhomogeneous problems with $p$-Laplacian
Applying the Briot-Bouquet theorem we show that there exists an unique analytic solution to the equation $\left( t^{n-1}\Phi _{p}\left( y^{\prime}\right) \right) ^{\prime }+(-1)^{i}t^{n-1}\Phi _{q}(y)=0$, on $(0,~a)$, where $\Phi _{r}(y):=\left\vert y\right\vert ^{r-1}y$, $0<r,p,q\in R^{+}$, $i=0...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Szeged
2008-07-01
|
Series: | Electronic Journal of Qualitative Theory of Differential Equations |
Online Access: | http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=319 |
id |
doaj-ad010e7e7d1a4e93bfbf21ed041ba60d |
---|---|
record_format |
Article |
spelling |
doaj-ad010e7e7d1a4e93bfbf21ed041ba60d2021-07-14T07:21:19ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38751417-38752008-07-01200741810.14232/ejqtde.2007.7.4319Local analytic solutions to some nonhomogeneous problems with $p$-LaplacianGabriella Bognár0University of Miskolc, Miskolc-Egyetemváros, HungaryApplying the Briot-Bouquet theorem we show that there exists an unique analytic solution to the equation $\left( t^{n-1}\Phi _{p}\left( y^{\prime}\right) \right) ^{\prime }+(-1)^{i}t^{n-1}\Phi _{q}(y)=0$, on $(0,~a)$, where $\Phi _{r}(y):=\left\vert y\right\vert ^{r-1}y$, $0<r,p,q\in R^{+}$, $i=0,1$, $1\leq n\in N,\ a$ is a small positive real number. The initial conditions to be added to the equation are $y(0)=A\neq 0$, $y^{\prime}(0)=0$, for any real number $A$. We present a method how the solution can be expanded in a power series for near zero.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=319 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Gabriella Bognár |
spellingShingle |
Gabriella Bognár Local analytic solutions to some nonhomogeneous problems with $p$-Laplacian Electronic Journal of Qualitative Theory of Differential Equations |
author_facet |
Gabriella Bognár |
author_sort |
Gabriella Bognár |
title |
Local analytic solutions to some nonhomogeneous problems with $p$-Laplacian |
title_short |
Local analytic solutions to some nonhomogeneous problems with $p$-Laplacian |
title_full |
Local analytic solutions to some nonhomogeneous problems with $p$-Laplacian |
title_fullStr |
Local analytic solutions to some nonhomogeneous problems with $p$-Laplacian |
title_full_unstemmed |
Local analytic solutions to some nonhomogeneous problems with $p$-Laplacian |
title_sort |
local analytic solutions to some nonhomogeneous problems with $p$-laplacian |
publisher |
University of Szeged |
series |
Electronic Journal of Qualitative Theory of Differential Equations |
issn |
1417-3875 1417-3875 |
publishDate |
2008-07-01 |
description |
Applying the Briot-Bouquet theorem we show that there exists an unique analytic solution to the equation $\left( t^{n-1}\Phi _{p}\left( y^{\prime}\right) \right) ^{\prime }+(-1)^{i}t^{n-1}\Phi _{q}(y)=0$, on $(0,~a)$, where $\Phi _{r}(y):=\left\vert y\right\vert ^{r-1}y$, $0<r,p,q\in R^{+}$, $i=0,1$, $1\leq n\in N,\ a$ is a small positive real number. The initial conditions to be added to the equation are $y(0)=A\neq 0$, $y^{\prime}(0)=0$, for any real number $A$. We present a method how the solution can be expanded in a power series for near zero. |
url |
http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=319 |
work_keys_str_mv |
AT gabriellabognar localanalyticsolutionstosomenonhomogeneousproblemswithplaplacian |
_version_ |
1721303857444683776 |