Synthesis and Characterization of Co/Ni/CoNi-ZSM-5 Catalyst for Hydrogen Production

Nickel is commonly used as a catalyst in hydrogen production. However, the use of nickel catalysts in the steam reforming process has the disadvantage of coke formation and high cost. Therefore, in this research, Ni/ZSM-5 catalyst synthesis was used to reduce production cost and an addition of cobal...

Full description

Bibliographic Details
Main Authors: Widayat Widayat, Nuur Annisa Arianti, Satriadi Hantoro, Syaiful Syaiful
Format: Article
Language:English
Published: EDP Sciences 2018-01-01
Series:MATEC Web of Conferences
Online Access:https://doi.org/10.1051/matecconf/201815606013
Description
Summary:Nickel is commonly used as a catalyst in hydrogen production. However, the use of nickel catalysts in the steam reforming process has the disadvantage of coke formation and high cost. Therefore, in this research, Ni/ZSM-5 catalyst synthesis was used to reduce production cost and an addition of cobalt (Co) metal to avoid coke formation. The method consists of a synthesis of ZSM-5 catalyst using hydrothermal process. Furthermore, the crystalline product was impregnated with the metal cobalt, nickel and combination of cobalt-nickel as much as 2% by weight metal/weight of the catalyst. Then the XRD and EDX characterization of Co/ZSM-5, Ni/ZSM-5, and CoNi/ZSM-5 was done followed by catalytic testing in the production of hydrogen from glycerol using steam reforming process. From XRD characterization results showed that Co/ZSM-5 catalyst has a crystallinity of 78.69%, Ni/ZSM-5 catalyst has 70.04% crystallinity and CoNi/ZSM-5 catalyst has 76.99% crystallinity. Catalytic testing on hydrogen production showed that CoNi/ZSM-5 catalyst produced the highest hydrogen concentration of 1,756.33 ppm while Ni/ZSM-5 catalyst produces 1,240 ppm and Co/ZSM-5 catalyst produces 491 ppm.
ISSN:2261-236X