The two-mass contribution to the three-loop polarized gluonic operator matrix element Agg,Q(3)
We compute the two-mass contributions to the polarized massive operator matrix element Agg,Q(3) at third order in the strong coupling constant αs in Quantum Chromodynamics analytically. These corrections are important ingredients for the matching relations in the variable flavor number scheme and fo...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2020-06-01
|
Series: | Nuclear Physics B |
Online Access: | http://www.sciencedirect.com/science/article/pii/S0550321320301450 |
id |
doaj-acbe4f65073148e3b68f64655c346ba1 |
---|---|
record_format |
Article |
spelling |
doaj-acbe4f65073148e3b68f64655c346ba12020-11-25T03:09:29ZengElsevierNuclear Physics B0550-32132020-06-01955115059The two-mass contribution to the three-loop polarized gluonic operator matrix element Agg,Q(3)J. Ablinger0J. Blümlein1A. De Freitas2A. Goedicke3M. Saragnese4C. Schneider5K. Schönwald6Johannes Kepler University Linz, Research Institute for Symbolic Computation (RISC), Altenberger Straße 69, A–4040, Linz, AustriaDeutsches Elektronen–Synchrotron, DESY, Platanenallee 6, D-15738 Zeuthen, GermanyDeutsches Elektronen–Synchrotron, DESY, Platanenallee 6, D-15738 Zeuthen, GermanyInstitut für Theoretische Teilchenphysik Campus Süd, Karlsruher Institut für Technologie (KIT) D-76128 Karlsruhe, GermanyDeutsches Elektronen–Synchrotron, DESY, Platanenallee 6, D-15738 Zeuthen, GermanyJohannes Kepler University Linz, Research Institute for Symbolic Computation (RISC), Altenberger Straße 69, A–4040, Linz, AustriaDeutsches Elektronen–Synchrotron, DESY, Platanenallee 6, D-15738 Zeuthen, Germany; Institut für Theoretische Teilchenphysik Campus Süd, Karlsruher Institut für Technologie (KIT) D-76128 Karlsruhe, GermanyWe compute the two-mass contributions to the polarized massive operator matrix element Agg,Q(3) at third order in the strong coupling constant αs in Quantum Chromodynamics analytically. These corrections are important ingredients for the matching relations in the variable flavor number scheme and for the calculation of Wilson coefficients in deep–inelastic scattering in the asymptotic regime Q2≫mc2,mb2. The analytic result is expressed in terms of nested harmonic, generalized harmonic, cyclotomic and binomial sums in N-space and by iterated integrals involving square-root valued arguments in z space, as functions of the mass ratio. Numerical results are presented. New two–scale iterative integrals are calculated.http://www.sciencedirect.com/science/article/pii/S0550321320301450 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
J. Ablinger J. Blümlein A. De Freitas A. Goedicke M. Saragnese C. Schneider K. Schönwald |
spellingShingle |
J. Ablinger J. Blümlein A. De Freitas A. Goedicke M. Saragnese C. Schneider K. Schönwald The two-mass contribution to the three-loop polarized gluonic operator matrix element Agg,Q(3) Nuclear Physics B |
author_facet |
J. Ablinger J. Blümlein A. De Freitas A. Goedicke M. Saragnese C. Schneider K. Schönwald |
author_sort |
J. Ablinger |
title |
The two-mass contribution to the three-loop polarized gluonic operator matrix element Agg,Q(3) |
title_short |
The two-mass contribution to the three-loop polarized gluonic operator matrix element Agg,Q(3) |
title_full |
The two-mass contribution to the three-loop polarized gluonic operator matrix element Agg,Q(3) |
title_fullStr |
The two-mass contribution to the three-loop polarized gluonic operator matrix element Agg,Q(3) |
title_full_unstemmed |
The two-mass contribution to the three-loop polarized gluonic operator matrix element Agg,Q(3) |
title_sort |
two-mass contribution to the three-loop polarized gluonic operator matrix element agg,q(3) |
publisher |
Elsevier |
series |
Nuclear Physics B |
issn |
0550-3213 |
publishDate |
2020-06-01 |
description |
We compute the two-mass contributions to the polarized massive operator matrix element Agg,Q(3) at third order in the strong coupling constant αs in Quantum Chromodynamics analytically. These corrections are important ingredients for the matching relations in the variable flavor number scheme and for the calculation of Wilson coefficients in deep–inelastic scattering in the asymptotic regime Q2≫mc2,mb2. The analytic result is expressed in terms of nested harmonic, generalized harmonic, cyclotomic and binomial sums in N-space and by iterated integrals involving square-root valued arguments in z space, as functions of the mass ratio. Numerical results are presented. New two–scale iterative integrals are calculated. |
url |
http://www.sciencedirect.com/science/article/pii/S0550321320301450 |
work_keys_str_mv |
AT jablinger thetwomasscontributiontothethreelooppolarizedgluonicoperatormatrixelementaggq3 AT jblumlein thetwomasscontributiontothethreelooppolarizedgluonicoperatormatrixelementaggq3 AT adefreitas thetwomasscontributiontothethreelooppolarizedgluonicoperatormatrixelementaggq3 AT agoedicke thetwomasscontributiontothethreelooppolarizedgluonicoperatormatrixelementaggq3 AT msaragnese thetwomasscontributiontothethreelooppolarizedgluonicoperatormatrixelementaggq3 AT cschneider thetwomasscontributiontothethreelooppolarizedgluonicoperatormatrixelementaggq3 AT kschonwald thetwomasscontributiontothethreelooppolarizedgluonicoperatormatrixelementaggq3 AT jablinger twomasscontributiontothethreelooppolarizedgluonicoperatormatrixelementaggq3 AT jblumlein twomasscontributiontothethreelooppolarizedgluonicoperatormatrixelementaggq3 AT adefreitas twomasscontributiontothethreelooppolarizedgluonicoperatormatrixelementaggq3 AT agoedicke twomasscontributiontothethreelooppolarizedgluonicoperatormatrixelementaggq3 AT msaragnese twomasscontributiontothethreelooppolarizedgluonicoperatormatrixelementaggq3 AT cschneider twomasscontributiontothethreelooppolarizedgluonicoperatormatrixelementaggq3 AT kschonwald twomasscontributiontothethreelooppolarizedgluonicoperatormatrixelementaggq3 |
_version_ |
1724662367703269376 |