Multivariable Intelligent Control for M.A.G. Welding Process

A neural control technique, applied to the MAG (Metal-Active Gas) welding process, is presented in the paper. The static nonlinear model of welding process is based on experimental determinations. The geometric parameters of the welding beam are considered as output parameters of the MAG process (Bs...

Full description

Bibliographic Details
Main Authors: Constantin MIHOLCA, Viorel NICOLAU, Cristian MUNTEANU, Dan MIHAILESCU
Format: Article
Language:English
Published: Universitatea Dunarea de Jos 2008-07-01
Series:Analele Universităţii "Dunărea de Jos" Galaţi: Fascicula III, Electrotehnică, Electronică, Automatică, Informatică
Subjects:
Online Access:http://www.ann.ugal.ro/eeai/archives/2008/Lucrare-03-Miholca1.pdf
id doaj-ac9a3c7e89304092bfc96b156f93f335
record_format Article
spelling doaj-ac9a3c7e89304092bfc96b156f93f3352020-11-24T22:43:51ZengUniversitatea Dunarea de JosAnalele Universităţii "Dunărea de Jos" Galaţi: Fascicula III, Electrotehnică, Electronică, Automatică, Informatică1221-454X2008-07-013111722Multivariable Intelligent Control for M.A.G. Welding Process Constantin MIHOLCAViorel NICOLAUCristian MUNTEANUDan MIHAILESCUA neural control technique, applied to the MAG (Metal-Active Gas) welding process, is presented in the paper. The static nonlinear model of welding process is based on experimental determinations. The geometric parameters of the welding beam are considered as output parameters of the MAG process (Bs, a, p), and they are measured for different step-variations of the input parameters (Ve, Vs, Ua). The analysis of the output dynamics was further used to model the MAG welding process using a 3- layer neural network with 6 hidden-layer neurons. In order to reject perturbations and cancel the stationary error, an error compensator was used, which consists of the reversedynamic model connected to a proportional integrator controller. imulation results for the multivariable neural controller are presented.http://www.ann.ugal.ro/eeai/archives/2008/Lucrare-03-Miholca1.pdfwelding processintelligent controlnonlinear modelneural networkreverse dynamic model
collection DOAJ
language English
format Article
sources DOAJ
author Constantin MIHOLCA
Viorel NICOLAU
Cristian MUNTEANU
Dan MIHAILESCU
spellingShingle Constantin MIHOLCA
Viorel NICOLAU
Cristian MUNTEANU
Dan MIHAILESCU
Multivariable Intelligent Control for M.A.G. Welding Process
Analele Universităţii "Dunărea de Jos" Galaţi: Fascicula III, Electrotehnică, Electronică, Automatică, Informatică
welding process
intelligent control
nonlinear model
neural network
reverse dynamic model
author_facet Constantin MIHOLCA
Viorel NICOLAU
Cristian MUNTEANU
Dan MIHAILESCU
author_sort Constantin MIHOLCA
title Multivariable Intelligent Control for M.A.G. Welding Process
title_short Multivariable Intelligent Control for M.A.G. Welding Process
title_full Multivariable Intelligent Control for M.A.G. Welding Process
title_fullStr Multivariable Intelligent Control for M.A.G. Welding Process
title_full_unstemmed Multivariable Intelligent Control for M.A.G. Welding Process
title_sort multivariable intelligent control for m.a.g. welding process
publisher Universitatea Dunarea de Jos
series Analele Universităţii "Dunărea de Jos" Galaţi: Fascicula III, Electrotehnică, Electronică, Automatică, Informatică
issn 1221-454X
publishDate 2008-07-01
description A neural control technique, applied to the MAG (Metal-Active Gas) welding process, is presented in the paper. The static nonlinear model of welding process is based on experimental determinations. The geometric parameters of the welding beam are considered as output parameters of the MAG process (Bs, a, p), and they are measured for different step-variations of the input parameters (Ve, Vs, Ua). The analysis of the output dynamics was further used to model the MAG welding process using a 3- layer neural network with 6 hidden-layer neurons. In order to reject perturbations and cancel the stationary error, an error compensator was used, which consists of the reversedynamic model connected to a proportional integrator controller. imulation results for the multivariable neural controller are presented.
topic welding process
intelligent control
nonlinear model
neural network
reverse dynamic model
url http://www.ann.ugal.ro/eeai/archives/2008/Lucrare-03-Miholca1.pdf
work_keys_str_mv AT constantinmiholca multivariableintelligentcontrolformagweldingprocess
AT viorelnicolau multivariableintelligentcontrolformagweldingprocess
AT cristianmunteanu multivariableintelligentcontrolformagweldingprocess
AT danmihailescu multivariableintelligentcontrolformagweldingprocess
_version_ 1725694303464849408