Optical Nerve Detection by Diffuse Reflectance Spectroscopy for Feedback Controlled Oral and Maxillofacial Laser Surgery
<p>Abstract</p> <p>Background</p> <p>Laser surgery lacks haptic feedback, which is accompanied by the risk of iatrogenic nerve damage. It was the aim of this study to investigate diffuse reflectance spectroscopy for tissue differentiation as the base of a feedback contr...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2011-02-01
|
Series: | Journal of Translational Medicine |
Online Access: | http://www.translational-medicine.com/content/9/1/20 |
id |
doaj-ac8513871c034144a08a2aa06bf0e659 |
---|---|
record_format |
Article |
spelling |
doaj-ac8513871c034144a08a2aa06bf0e6592020-11-25T00:47:56ZengBMCJournal of Translational Medicine1479-58762011-02-01912010.1186/1479-5876-9-20Optical Nerve Detection by Diffuse Reflectance Spectroscopy for Feedback Controlled Oral and Maxillofacial Laser SurgeryDouplik AlexandreTangermann-Gerk KatjaAdler WernerZam AzharStelzle FlorianNkenke EmekaSchmidt Michael<p>Abstract</p> <p>Background</p> <p>Laser surgery lacks haptic feedback, which is accompanied by the risk of iatrogenic nerve damage. It was the aim of this study to investigate diffuse reflectance spectroscopy for tissue differentiation as the base of a feedback control system to enhance nerve preservation in oral and maxillofacial laser surgery.</p> <p>Methods</p> <p>Diffuse reflectance spectra of nerve tissue, salivary gland and bone (8640 spectra) of the mid-facial region of <it>ex vivo </it>domestic pigs were acquired in the wavelength range of 350-650 nm. Tissue differentiation was performed using principal component (PC) analysis followed by linear discriminant analysis (LDA). Specificity and sensitivity were calculated using receiver operating characteristic (ROC) analysis and the area under curve (AUC).</p> <p>Results</p> <p>Five PCs were found to be adequate for tissue differentiation with diffuse reflectance spectra using LDA. Nerve tissue could be differed from bone as well as from salivary gland with AUC results of greater than 88%, sensitivity of greater than 83% and specificity in excess of 78%.</p> <p>Conclusions</p> <p>Diffuse reflectance spectroscopy is an adequate technique for nerve identification in the vicinity of bone and salivary gland. The results set the basis for a feedback system to prevent iatrogenic nerve damage when performing oral and maxillofacial laser surgery.</p> http://www.translational-medicine.com/content/9/1/20 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Douplik Alexandre Tangermann-Gerk Katja Adler Werner Zam Azhar Stelzle Florian Nkenke Emeka Schmidt Michael |
spellingShingle |
Douplik Alexandre Tangermann-Gerk Katja Adler Werner Zam Azhar Stelzle Florian Nkenke Emeka Schmidt Michael Optical Nerve Detection by Diffuse Reflectance Spectroscopy for Feedback Controlled Oral and Maxillofacial Laser Surgery Journal of Translational Medicine |
author_facet |
Douplik Alexandre Tangermann-Gerk Katja Adler Werner Zam Azhar Stelzle Florian Nkenke Emeka Schmidt Michael |
author_sort |
Douplik Alexandre |
title |
Optical Nerve Detection by Diffuse Reflectance Spectroscopy for Feedback Controlled Oral and Maxillofacial Laser Surgery |
title_short |
Optical Nerve Detection by Diffuse Reflectance Spectroscopy for Feedback Controlled Oral and Maxillofacial Laser Surgery |
title_full |
Optical Nerve Detection by Diffuse Reflectance Spectroscopy for Feedback Controlled Oral and Maxillofacial Laser Surgery |
title_fullStr |
Optical Nerve Detection by Diffuse Reflectance Spectroscopy for Feedback Controlled Oral and Maxillofacial Laser Surgery |
title_full_unstemmed |
Optical Nerve Detection by Diffuse Reflectance Spectroscopy for Feedback Controlled Oral and Maxillofacial Laser Surgery |
title_sort |
optical nerve detection by diffuse reflectance spectroscopy for feedback controlled oral and maxillofacial laser surgery |
publisher |
BMC |
series |
Journal of Translational Medicine |
issn |
1479-5876 |
publishDate |
2011-02-01 |
description |
<p>Abstract</p> <p>Background</p> <p>Laser surgery lacks haptic feedback, which is accompanied by the risk of iatrogenic nerve damage. It was the aim of this study to investigate diffuse reflectance spectroscopy for tissue differentiation as the base of a feedback control system to enhance nerve preservation in oral and maxillofacial laser surgery.</p> <p>Methods</p> <p>Diffuse reflectance spectra of nerve tissue, salivary gland and bone (8640 spectra) of the mid-facial region of <it>ex vivo </it>domestic pigs were acquired in the wavelength range of 350-650 nm. Tissue differentiation was performed using principal component (PC) analysis followed by linear discriminant analysis (LDA). Specificity and sensitivity were calculated using receiver operating characteristic (ROC) analysis and the area under curve (AUC).</p> <p>Results</p> <p>Five PCs were found to be adequate for tissue differentiation with diffuse reflectance spectra using LDA. Nerve tissue could be differed from bone as well as from salivary gland with AUC results of greater than 88%, sensitivity of greater than 83% and specificity in excess of 78%.</p> <p>Conclusions</p> <p>Diffuse reflectance spectroscopy is an adequate technique for nerve identification in the vicinity of bone and salivary gland. The results set the basis for a feedback system to prevent iatrogenic nerve damage when performing oral and maxillofacial laser surgery.</p> |
url |
http://www.translational-medicine.com/content/9/1/20 |
work_keys_str_mv |
AT douplikalexandre opticalnervedetectionbydiffusereflectancespectroscopyforfeedbackcontrolledoralandmaxillofaciallasersurgery AT tangermanngerkkatja opticalnervedetectionbydiffusereflectancespectroscopyforfeedbackcontrolledoralandmaxillofaciallasersurgery AT adlerwerner opticalnervedetectionbydiffusereflectancespectroscopyforfeedbackcontrolledoralandmaxillofaciallasersurgery AT zamazhar opticalnervedetectionbydiffusereflectancespectroscopyforfeedbackcontrolledoralandmaxillofaciallasersurgery AT stelzleflorian opticalnervedetectionbydiffusereflectancespectroscopyforfeedbackcontrolledoralandmaxillofaciallasersurgery AT nkenkeemeka opticalnervedetectionbydiffusereflectancespectroscopyforfeedbackcontrolledoralandmaxillofaciallasersurgery AT schmidtmichael opticalnervedetectionbydiffusereflectancespectroscopyforfeedbackcontrolledoralandmaxillofaciallasersurgery |
_version_ |
1725257768981495808 |