Discrimination of Sweet Cherry Cultivars Based on Electronic Tongue Potentiometric Fingerprints

Sweet cherry is highly appreciated by its characteristic flavor, which conditions the consumer’s preference. In this study, four sweet cherry cultivars (Durona, Lapins, Summit, and Van cultivars) were characterized according to biometric (fruit and stone weights, length, maximum and minimum diameter...

Full description

Bibliographic Details
Main Authors: Isabel Rodrigues, Nuno Rodrigues, Ítala M. G. Marx, Ana C. A. Veloso, Ana Cristina Ramos, José Alberto Pereira, António M. Peres
Format: Article
Language:English
Published: MDPI AG 2020-10-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/10/20/7053
Description
Summary:Sweet cherry is highly appreciated by its characteristic flavor, which conditions the consumer’s preference. In this study, four sweet cherry cultivars (Durona, Lapins, Summit, and Van cultivars) were characterized according to biometric (fruit and stone weights, length, maximum and minimum diameters, pulp/stone mass ratio), physicochemical (CIELAB color, penetration force, titratable acidity, and total soluble solids), and potentiometric profiles (recorded by a lab-made electronic tongue with lipid polymeric membranes). Biometric and physicochemical data were significantly cultivar-dependent (<i>p</i>-value < 0.0001, one-way ANOVA). Summit cherries had higher masses and dimensions. Lapins cherries had the highest penetration force values having, together with Summit cherries, the highest CIELAB values. Van cherries showed the highest total soluble solids contents. No significant differences were found for fruits’ acidity (similar titratable acidities). The possibility of discriminating cherry cultivars was also evaluated using a linear discriminant analysis/simulated-annealing algorithm. A discriminant model was established based on nine non-redundant biometric-physicochemical parameters (using a low-level data fusion), with low sensitivity (75 ± 15% for the repeated K-fold cross-validation). On the contrary, a discriminant model, based on the potentiometric fingerprints of 11 selected sensors, allowed a better discrimination, with sensitivities of 88 ± 7% for the repeated K-fold cross-validation procedure. Thus, the electronic tongue could be used as a practical tool to discriminate cherry cultivars and, if applied by fruit traders, may reduce the risk of mislabeling, increasing the consumers’ confidence when purchasing this high-value product.
ISSN:2076-3417