Unique Constant Phase Element Behavior of the Electrolyte–Graphene Interface

We report a unique constant phase element (CPE) behavior (<inline-formula> <math display="inline"> <semantics> <mrow> <mfrac> <mn>1</mn> <mi>Z</mi> </mfrac> <mo>=</mo> <msub> <mi>Q</mi> <mn>0<...

Full description

Bibliographic Details
Main Authors: Jianbo Sun, Yuxin Liu
Format: Article
Language:English
Published: MDPI AG 2019-06-01
Series:Nanomaterials
Subjects:
Online Access:https://www.mdpi.com/2079-4991/9/7/923
id doaj-ac6f3397b95c44cb99864fb96ee7b8ff
record_format Article
spelling doaj-ac6f3397b95c44cb99864fb96ee7b8ff2020-11-25T00:47:47ZengMDPI AGNanomaterials2079-49912019-06-019792310.3390/nano9070923nano9070923Unique Constant Phase Element Behavior of the Electrolyte–Graphene InterfaceJianbo Sun0Yuxin Liu1Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506, USALane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506, USAWe report a unique constant phase element (CPE) behavior (<inline-formula> <math display="inline"> <semantics> <mrow> <mfrac> <mn>1</mn> <mi>Z</mi> </mfrac> <mo>=</mo> <msub> <mi>Q</mi> <mn>0</mn> </msub> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mi>j</mi> <mi>&#969;</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mi>&#945;</mi> </msup> </mrow> </semantics> </math> </inline-formula>) of the electrolyte&#8722;graphene interface with both <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>Q</mi> <mn>0</mn> </msub> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mi>&#945;</mi> </semantics> </math> </inline-formula> showing dependence on the gate voltage. The frequency response of the electrolyte&#8722;graphene interface was studied using electrochemical impedance spectroscopy (EIS). The result suggests that (1) the electrolyte&#8722;graphene interface should be characterized as a CPE (<inline-formula> <math display="inline"> <semantics> <mi>&#945;</mi> </semantics> </math> </inline-formula> &lt; 1), rather than an ideal capacitor; and (2) both <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>Q</mi> <mn>0</mn> </msub> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mi>&#945;</mi> </semantics> </math> </inline-formula> show ambipolar dependence on the applied voltage. We speculate that the CPE behavior of the electrolyte&#8722;graphene interface arises from the charged impurities on the substrate and the defects in the graphene lattice, which could introduce inhomogeneity of local density of states (DOS). The low density of states of graphene makes <inline-formula> <math display="inline"> <semantics> <mi>&#945;</mi> </semantics> </math> </inline-formula> sensitive to these local DOS near the Dirac point, and thus showing dependence on the gate voltage. Measurement of the electrolyte&#8722;graphene interface capacitance based on multi-frequency capacitance-voltage (CV) profiling was demonstrated, and the extraction of the carrier mobility was performed. The study could lead to a more accurate understanding of the capacitive behavior of the electrolyte&#8722;graphene interface, which is instructive for the design and analysis of devices involving the electrolyte&#8722;graphene interface for nanoelectronics and bioelectronics applications.https://www.mdpi.com/2079-4991/9/7/923electrolyte–graphene interfaceconstant phase elementfrequency response
collection DOAJ
language English
format Article
sources DOAJ
author Jianbo Sun
Yuxin Liu
spellingShingle Jianbo Sun
Yuxin Liu
Unique Constant Phase Element Behavior of the Electrolyte–Graphene Interface
Nanomaterials
electrolyte–graphene interface
constant phase element
frequency response
author_facet Jianbo Sun
Yuxin Liu
author_sort Jianbo Sun
title Unique Constant Phase Element Behavior of the Electrolyte–Graphene Interface
title_short Unique Constant Phase Element Behavior of the Electrolyte–Graphene Interface
title_full Unique Constant Phase Element Behavior of the Electrolyte–Graphene Interface
title_fullStr Unique Constant Phase Element Behavior of the Electrolyte–Graphene Interface
title_full_unstemmed Unique Constant Phase Element Behavior of the Electrolyte–Graphene Interface
title_sort unique constant phase element behavior of the electrolyte–graphene interface
publisher MDPI AG
series Nanomaterials
issn 2079-4991
publishDate 2019-06-01
description We report a unique constant phase element (CPE) behavior (<inline-formula> <math display="inline"> <semantics> <mrow> <mfrac> <mn>1</mn> <mi>Z</mi> </mfrac> <mo>=</mo> <msub> <mi>Q</mi> <mn>0</mn> </msub> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mi>j</mi> <mi>&#969;</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mi>&#945;</mi> </msup> </mrow> </semantics> </math> </inline-formula>) of the electrolyte&#8722;graphene interface with both <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>Q</mi> <mn>0</mn> </msub> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mi>&#945;</mi> </semantics> </math> </inline-formula> showing dependence on the gate voltage. The frequency response of the electrolyte&#8722;graphene interface was studied using electrochemical impedance spectroscopy (EIS). The result suggests that (1) the electrolyte&#8722;graphene interface should be characterized as a CPE (<inline-formula> <math display="inline"> <semantics> <mi>&#945;</mi> </semantics> </math> </inline-formula> &lt; 1), rather than an ideal capacitor; and (2) both <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>Q</mi> <mn>0</mn> </msub> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mi>&#945;</mi> </semantics> </math> </inline-formula> show ambipolar dependence on the applied voltage. We speculate that the CPE behavior of the electrolyte&#8722;graphene interface arises from the charged impurities on the substrate and the defects in the graphene lattice, which could introduce inhomogeneity of local density of states (DOS). The low density of states of graphene makes <inline-formula> <math display="inline"> <semantics> <mi>&#945;</mi> </semantics> </math> </inline-formula> sensitive to these local DOS near the Dirac point, and thus showing dependence on the gate voltage. Measurement of the electrolyte&#8722;graphene interface capacitance based on multi-frequency capacitance-voltage (CV) profiling was demonstrated, and the extraction of the carrier mobility was performed. The study could lead to a more accurate understanding of the capacitive behavior of the electrolyte&#8722;graphene interface, which is instructive for the design and analysis of devices involving the electrolyte&#8722;graphene interface for nanoelectronics and bioelectronics applications.
topic electrolyte–graphene interface
constant phase element
frequency response
url https://www.mdpi.com/2079-4991/9/7/923
work_keys_str_mv AT jianbosun uniqueconstantphaseelementbehavioroftheelectrolytegrapheneinterface
AT yuxinliu uniqueconstantphaseelementbehavioroftheelectrolytegrapheneinterface
_version_ 1725258522974748672