Simultaneous Determination of Crypto-Chlorogenic Acid, Isoquercetin, and Astragalin Contents in Moringa oleifera Leaf Extracts by TLC-Densitometric Method
Moringa oleifera Lamarck (Moringaceae) is used as a multipurpose medicinal plant for the treatment of various diseases. Isoquercetin, astragalin, and crypto-chlorogenic acid have been previously found to be major active components in the leaves of this plant. In this study, a thin-layer-chromatograp...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2013-01-01
|
Series: | Evidence-Based Complementary and Alternative Medicine |
Online Access: | http://dx.doi.org/10.1155/2013/917609 |
Summary: | Moringa oleifera Lamarck (Moringaceae) is used as a multipurpose medicinal plant for the treatment of various diseases. Isoquercetin, astragalin, and crypto-chlorogenic acid have been previously found to be major active components in the leaves of this plant. In this study, a thin-layer-chromatography (TLC-)densitometric method was developed and validated for simultaneous quantification of these major components in the 70% ethanolic extracts of M. oleifera leaves collected from 12 locations. The average amounts of crypto-chlorogenic acid, isoquercetin, and astragalin were found to be 0.0473, 0.0427, and 0.0534% dry weight, respectively. The method was validated for linearity, precision, accuracy, limit of detection, limit of quantitation, and robustness. The linearity was obtained in the range of 100–500 ng/spot with a correlation coefficient (r) over 0.9961. Intraday and interday precisions demonstrated relative standard deviations of less than 5%. The accuracy of the method was confirmed by determining the recovery. The average recoveries of each component from the extracts were in the range of 98.28 to 99.65%. Additionally, the leaves from Chiang Mai province contained the highest amounts of all active components. The proposed TLC-densitometric method was simple, accurate, precise, and cost-effective for routine quality controlling of M. oleifera leaf extracts. |
---|---|
ISSN: | 1741-427X 1741-4288 |