Cooperation between Two Micro-Grids Considering Power Exchange: An Optimal Sizing Approach Based on Collaborative Operation

Optimal sizing of single micro-grid faces problems such as high life cycle cost, low self-consumption of power generated by renewable energy, and disturbances of intermittent renewable energy. Interconnecting single micro-grids as a cooperative system to reach a proper size of renewable energy gener...

Full description

Bibliographic Details
Main Authors: Yuansheng Huang, Lei Yang, Shijian Liu, Guangli Wang
Format: Article
Language:English
Published: MDPI AG 2018-11-01
Series:Sustainability
Subjects:
Online Access:https://www.mdpi.com/2071-1050/10/11/4198
Description
Summary:Optimal sizing of single micro-grid faces problems such as high life cycle cost, low self-consumption of power generated by renewable energy, and disturbances of intermittent renewable energy. Interconnecting single micro-grids as a cooperative system to reach a proper size of renewable energy generations and batteries is a credible method to promote performance in reliability and economy. However, to guarantee the optimal collaborative sizing of two micro-grids is a challenging task, particularly with power exchange. In this paper, the optimal sizing of economic and collaborative for two micro-grids and the tie line is modelled as a unit commitment problem to express the influence of power exchange between micro-grids on each life cycle cost, meanwhile guaranteeing certain degree of power supply reliability, which is calculated by Loss of Power Supply Probability in the simulation. A specified collaborative operation of power exchange between two micro-grids is constructed as the scheduling scheme to optimize the life cycle cost of two micro-grids using genetic algorithm. The case study verifies the validity of the method proposed and reveal the advantages of power exchange in the two micro-grids system. The results demonstrate that the proposed optimal sizing means based on collaborative operation can minimize the life cycle cost of two micro-grids respectively considering different renewable energy sources. Compared to the sizing of single micro-grid, the suggested method can not only improve the economic performance for each micro-grid but also form a strong support between interconnected micro-grids. In addition, a proper price of power exchanges will balance the cost saving between micro-grids, making the corresponding stake-holders prefer to be interconnected.
ISSN:2071-1050