Decoding brain activity using a large-scale probabilistic functional-anatomical atlas of human cognition.
A central goal of cognitive neuroscience is to decode human brain activity-that is, to infer mental processes from observed patterns of whole-brain activation. Previous decoding efforts have focused on classifying brain activity into a small set of discrete cognitive states. To attain maximal utilit...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2017-10-01
|
Series: | PLoS Computational Biology |
Online Access: | https://doi.org/10.1371/journal.pcbi.1005649 |
Summary: | A central goal of cognitive neuroscience is to decode human brain activity-that is, to infer mental processes from observed patterns of whole-brain activation. Previous decoding efforts have focused on classifying brain activity into a small set of discrete cognitive states. To attain maximal utility, a decoding framework must be open-ended, systematic, and context-sensitive-that is, capable of interpreting numerous brain states, presented in arbitrary combinations, in light of prior information. Here we take steps towards this objective by introducing a probabilistic decoding framework based on a novel topic model-Generalized Correspondence Latent Dirichlet Allocation-that learns latent topics from a database of over 11,000 published fMRI studies. The model produces highly interpretable, spatially-circumscribed topics that enable flexible decoding of whole-brain images. Importantly, the Bayesian nature of the model allows one to "seed" decoder priors with arbitrary images and text-enabling researchers, for the first time, to generate quantitative, context-sensitive interpretations of whole-brain patterns of brain activity. |
---|---|
ISSN: | 1553-734X 1553-7358 |