Correlation between surface modification and photoluminescence properties of β-Ga2O3 nanostructures

In this work three different growth methods have been used to grow β-Ga2O3 nanostructures. The nanostructures were characterized by Grazing Incident X-Ray Diffraction, Scanning Electron Microscopy, Transmission Electron Microscopy and Photoluminescence Spectroscopy. Photoluminescence spectra for all...

Full description

Bibliographic Details
Main Authors: R. Jangir, S. Porwal, Pragya Tiwari, Puspen Mondal, S. K. Rai, A. K. Srivastava, Indranil Bhaumik, Tapas Ganguli
Format: Article
Language:English
Published: AIP Publishing LLC 2016-03-01
Series:AIP Advances
Online Access:http://dx.doi.org/10.1063/1.4944908
Description
Summary:In this work three different growth methods have been used to grow β-Ga2O3 nanostructures. The nanostructures were characterized by Grazing Incident X-Ray Diffraction, Scanning Electron Microscopy, Transmission Electron Microscopy and Photoluminescence Spectroscopy. Photoluminescence spectra for all the samples of β-Ga2O3 nanostructures exhibit an UV and blue emission band. The relative intensity of UV and blue luminescence is strongly affected by the surface defects present on the nanostructures. Our study shows that Photoluminescence intensity of UV and blue luminescence can be reliably used to determine the quality of β-Ga2O3 nanostructures. Further the work opens up the possibility of using UV excitation and subsequent Photoluminescence analysis as a possible means for oxygen sensing. The Photoluminescence mechanism in β-Ga2O3 nanostructures is also discussed.
ISSN:2158-3226