Pseudo-Steady-State Parameters for a Well Penetrated by a Fracture with an Azimuth Angle in an Anisotropic Reservoir
Many oil wells in closed reservoirs continue to produce in the pseudo-steady-state flow regime for a long time. The principal objective of this work is to investigate the characteristics of two key pseudo-steady-state parameters—pseudo-steady-state constant (<i>b<sub>Dpss</s...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2019-06-01
|
Series: | Energies |
Subjects: | |
Online Access: | https://www.mdpi.com/1996-1073/12/12/2449 |
id |
doaj-ac1e5c9355d043768a0d176c45fde42d |
---|---|
record_format |
Article |
spelling |
doaj-ac1e5c9355d043768a0d176c45fde42d2020-11-24T22:04:03ZengMDPI AGEnergies1996-10732019-06-011212244910.3390/en12122449en12122449Pseudo-Steady-State Parameters for a Well Penetrated by a Fracture with an Azimuth Angle in an Anisotropic ReservoirGuoqiang Xing0Mingxian Wang1Shuhong Wu2Hua Li3Jiangyan Dong4Wenqi Zhao5Research Institute of Petroleum Exploration and Development, China National Petroleum Corporation, Beijing 100083, ChinaResearch Institute of Petroleum Exploration and Development, China National Petroleum Corporation, Beijing 100083, ChinaResearch Institute of Petroleum Exploration and Development, China National Petroleum Corporation, Beijing 100083, ChinaResearch Institute of Petroleum Exploration and Development, China National Petroleum Corporation, Beijing 100083, ChinaResearch Institute of Petroleum Exploration and Development, China National Petroleum Corporation, Beijing 100083, ChinaResearch Institute of Petroleum Exploration and Development, China National Petroleum Corporation, Beijing 100083, ChinaMany oil wells in closed reservoirs continue to produce in the pseudo-steady-state flow regime for a long time. The principal objective of this work is to investigate the characteristics of two key pseudo-steady-state parameters—pseudo-steady-state constant (<i>b<sub>Dpss</sub></i>) and pseudo-skin factor (S)—for a well penetrated by a fracture with an azimuth angle (<i>θ</i>) in an anisotropic reservoir. Firstly, a general analytical pressure solution for a finite-conductivity fracture with or without an azimuth angle in an anisotropic rectangular reservoir was developed by using the point-source function and spatial integral method, and two typical cases were employed to verify this solution. Secondly, with the asymptotic analysis method, the expressions of pseudo-steady-state constant and pseudo-skin factor were obtained on the basis of their definitions, and the effects of permeability anisotropy, fracture azimuth angle, fracture conductivity and reservoir shape on them were discussed in detail. Results show that all the <i>b<sub>Dpss</sub></i>-<i>θ</i> and S-<i>θ</i> curves are symmetric around the vertical line, <i>θ</i> = 90° and form a hump or groove shape. The optimized fracture direction in an anisotropic reservoir is perpendicular to the principal permeability axis. Furthermore, a new formula to calculate pseudo-skin factor was successfully proposed based on these two parameters’ relationship. Finally, as an application of pseudo-steady-state constant, a set of Blasingame format rate decline curves for the proposed model were established.https://www.mdpi.com/1996-1073/12/12/2449pseudo-steady-state flowanisotropic reservoirfracture azimuth anglepseudo-steady-state constantpseudo-skin factorBlasingame format decline curves |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Guoqiang Xing Mingxian Wang Shuhong Wu Hua Li Jiangyan Dong Wenqi Zhao |
spellingShingle |
Guoqiang Xing Mingxian Wang Shuhong Wu Hua Li Jiangyan Dong Wenqi Zhao Pseudo-Steady-State Parameters for a Well Penetrated by a Fracture with an Azimuth Angle in an Anisotropic Reservoir Energies pseudo-steady-state flow anisotropic reservoir fracture azimuth angle pseudo-steady-state constant pseudo-skin factor Blasingame format decline curves |
author_facet |
Guoqiang Xing Mingxian Wang Shuhong Wu Hua Li Jiangyan Dong Wenqi Zhao |
author_sort |
Guoqiang Xing |
title |
Pseudo-Steady-State Parameters for a Well Penetrated by a Fracture with an Azimuth Angle in an Anisotropic Reservoir |
title_short |
Pseudo-Steady-State Parameters for a Well Penetrated by a Fracture with an Azimuth Angle in an Anisotropic Reservoir |
title_full |
Pseudo-Steady-State Parameters for a Well Penetrated by a Fracture with an Azimuth Angle in an Anisotropic Reservoir |
title_fullStr |
Pseudo-Steady-State Parameters for a Well Penetrated by a Fracture with an Azimuth Angle in an Anisotropic Reservoir |
title_full_unstemmed |
Pseudo-Steady-State Parameters for a Well Penetrated by a Fracture with an Azimuth Angle in an Anisotropic Reservoir |
title_sort |
pseudo-steady-state parameters for a well penetrated by a fracture with an azimuth angle in an anisotropic reservoir |
publisher |
MDPI AG |
series |
Energies |
issn |
1996-1073 |
publishDate |
2019-06-01 |
description |
Many oil wells in closed reservoirs continue to produce in the pseudo-steady-state flow regime for a long time. The principal objective of this work is to investigate the characteristics of two key pseudo-steady-state parameters—pseudo-steady-state constant (<i>b<sub>Dpss</sub></i>) and pseudo-skin factor (S)—for a well penetrated by a fracture with an azimuth angle (<i>θ</i>) in an anisotropic reservoir. Firstly, a general analytical pressure solution for a finite-conductivity fracture with or without an azimuth angle in an anisotropic rectangular reservoir was developed by using the point-source function and spatial integral method, and two typical cases were employed to verify this solution. Secondly, with the asymptotic analysis method, the expressions of pseudo-steady-state constant and pseudo-skin factor were obtained on the basis of their definitions, and the effects of permeability anisotropy, fracture azimuth angle, fracture conductivity and reservoir shape on them were discussed in detail. Results show that all the <i>b<sub>Dpss</sub></i>-<i>θ</i> and S-<i>θ</i> curves are symmetric around the vertical line, <i>θ</i> = 90° and form a hump or groove shape. The optimized fracture direction in an anisotropic reservoir is perpendicular to the principal permeability axis. Furthermore, a new formula to calculate pseudo-skin factor was successfully proposed based on these two parameters’ relationship. Finally, as an application of pseudo-steady-state constant, a set of Blasingame format rate decline curves for the proposed model were established. |
topic |
pseudo-steady-state flow anisotropic reservoir fracture azimuth angle pseudo-steady-state constant pseudo-skin factor Blasingame format decline curves |
url |
https://www.mdpi.com/1996-1073/12/12/2449 |
work_keys_str_mv |
AT guoqiangxing pseudosteadystateparametersforawellpenetratedbyafracturewithanazimuthangleinananisotropicreservoir AT mingxianwang pseudosteadystateparametersforawellpenetratedbyafracturewithanazimuthangleinananisotropicreservoir AT shuhongwu pseudosteadystateparametersforawellpenetratedbyafracturewithanazimuthangleinananisotropicreservoir AT huali pseudosteadystateparametersforawellpenetratedbyafracturewithanazimuthangleinananisotropicreservoir AT jiangyandong pseudosteadystateparametersforawellpenetratedbyafracturewithanazimuthangleinananisotropicreservoir AT wenqizhao pseudosteadystateparametersforawellpenetratedbyafracturewithanazimuthangleinananisotropicreservoir |
_version_ |
1725830834220433408 |