A Hilbert-Type Integral Inequality in the Whole Plane Related to the Arc Tangent Function
In this work we establish a few equivalent statements of a Hilbert-type integral inequality in the whole plane related to the kernel of the arc tangent function. We prove that the constant factor, which is associated with the cosine function, is optimal. Some special cases as well as some operator e...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-02-01
|
Series: | Symmetry |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-8994/13/2/351 |
id |
doaj-abd1931f63ff436497035277b872c9ed |
---|---|
record_format |
Article |
spelling |
doaj-abd1931f63ff436497035277b872c9ed2021-02-22T00:04:04ZengMDPI AGSymmetry2073-89942021-02-011335135110.3390/sym13020351A Hilbert-Type Integral Inequality in the Whole Plane Related to the Arc Tangent FunctionMichael Th. Rassias0Bicheng Yang1Andrei Raigorodskii2Institute of Mathematics, University of Zurich, CH-8057 Zurich, SwitzerlandDepartment of Mathematics, Guangdong University of Education, Guangzhou 510303, ChinaMoscow Institute of Physics and Technology, Institutskiy per, d. 9, 141700 Dolgoprudny, RussiaIn this work we establish a few equivalent statements of a Hilbert-type integral inequality in the whole plane related to the kernel of the arc tangent function. We prove that the constant factor, which is associated with the cosine function, is optimal. Some special cases as well as some operator expressions are also presented.https://www.mdpi.com/2073-8994/13/2/351Hilbert-type integral inequalityweight functionequivalent statementoperatorcosine function |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Michael Th. Rassias Bicheng Yang Andrei Raigorodskii |
spellingShingle |
Michael Th. Rassias Bicheng Yang Andrei Raigorodskii A Hilbert-Type Integral Inequality in the Whole Plane Related to the Arc Tangent Function Symmetry Hilbert-type integral inequality weight function equivalent statement operator cosine function |
author_facet |
Michael Th. Rassias Bicheng Yang Andrei Raigorodskii |
author_sort |
Michael Th. Rassias |
title |
A Hilbert-Type Integral Inequality in the Whole Plane Related to the Arc Tangent Function |
title_short |
A Hilbert-Type Integral Inequality in the Whole Plane Related to the Arc Tangent Function |
title_full |
A Hilbert-Type Integral Inequality in the Whole Plane Related to the Arc Tangent Function |
title_fullStr |
A Hilbert-Type Integral Inequality in the Whole Plane Related to the Arc Tangent Function |
title_full_unstemmed |
A Hilbert-Type Integral Inequality in the Whole Plane Related to the Arc Tangent Function |
title_sort |
hilbert-type integral inequality in the whole plane related to the arc tangent function |
publisher |
MDPI AG |
series |
Symmetry |
issn |
2073-8994 |
publishDate |
2021-02-01 |
description |
In this work we establish a few equivalent statements of a Hilbert-type integral inequality in the whole plane related to the kernel of the arc tangent function. We prove that the constant factor, which is associated with the cosine function, is optimal. Some special cases as well as some operator expressions are also presented. |
topic |
Hilbert-type integral inequality weight function equivalent statement operator cosine function |
url |
https://www.mdpi.com/2073-8994/13/2/351 |
work_keys_str_mv |
AT michaelthrassias ahilberttypeintegralinequalityinthewholeplanerelatedtothearctangentfunction AT bichengyang ahilberttypeintegralinequalityinthewholeplanerelatedtothearctangentfunction AT andreiraigorodskii ahilberttypeintegralinequalityinthewholeplanerelatedtothearctangentfunction AT michaelthrassias hilberttypeintegralinequalityinthewholeplanerelatedtothearctangentfunction AT bichengyang hilberttypeintegralinequalityinthewholeplanerelatedtothearctangentfunction AT andreiraigorodskii hilberttypeintegralinequalityinthewholeplanerelatedtothearctangentfunction |
_version_ |
1724257158469517312 |