Dynamic Assessment of Masonry Towers Based on Terrestrial Radar Interferometer and Accelerometers
This paper discusses the performance of a terrestrial radar interferometer for the structural monitoring of ancient masonry towers. High-speed radar interferometry is an innovative and powerful remote sensing technique for the dynamic monitoring of large structures since it is contactless, non-destr...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2019-03-01
|
Series: | Sensors |
Subjects: | |
Online Access: | http://www.mdpi.com/1424-8220/19/6/1319 |
id |
doaj-abc5273e6dac4131937f68a42a1698e9 |
---|---|
record_format |
Article |
spelling |
doaj-abc5273e6dac4131937f68a42a1698e92020-11-24T21:16:17ZengMDPI AGSensors1424-82202019-03-01196131910.3390/s19061319s19061319Dynamic Assessment of Masonry Towers Based on Terrestrial Radar Interferometer and AccelerometersCristina Castagnetti0Elisa Bassoli1Loris Vincenzi2Francesco Mancini3Department of Engineering ‘Enzo Ferrari’ (DIEF), University of Modena and Reggio Emilia, 41125 Modena, ItalyDepartment of Engineering ‘Enzo Ferrari’ (DIEF), University of Modena and Reggio Emilia, 41125 Modena, ItalyDepartment of Engineering ‘Enzo Ferrari’ (DIEF), University of Modena and Reggio Emilia, 41125 Modena, ItalyDepartment of Engineering ‘Enzo Ferrari’ (DIEF), University of Modena and Reggio Emilia, 41125 Modena, ItalyThis paper discusses the performance of a terrestrial radar interferometer for the structural monitoring of ancient masonry towers. High-speed radar interferometry is an innovative and powerful remote sensing technique for the dynamic monitoring of large structures since it is contactless, non-destructive, and able to measure fast displacements on the order of tenths of millimeters. This methodology was tested on a masonry tower of great historical interest, the Saint Prospero bell tower (Northern Italy). To evaluate the quality of the results, data collected from the interferometer were compared and validated with those provided by two types of accelerometer-based measuring systems directly installed on the tower. Dynamic tests were conducted in operational conditions as well as during a bell concert. The first aimed at characterizing the dynamic behavior of the tower, while the second allowed to evaluate the bell swinging effects. Results showed a good agreement among the different measuring systems and demonstrated the potential of the radar interferometry for the dynamic monitoring of structures, with special focus on the need for an accurate design of the geometric aspects of the surveys.http://www.mdpi.com/1424-8220/19/6/1319structural health monitoringground-based radar interferometryreal aperture radaraccelerometersbell tower |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Cristina Castagnetti Elisa Bassoli Loris Vincenzi Francesco Mancini |
spellingShingle |
Cristina Castagnetti Elisa Bassoli Loris Vincenzi Francesco Mancini Dynamic Assessment of Masonry Towers Based on Terrestrial Radar Interferometer and Accelerometers Sensors structural health monitoring ground-based radar interferometry real aperture radar accelerometers bell tower |
author_facet |
Cristina Castagnetti Elisa Bassoli Loris Vincenzi Francesco Mancini |
author_sort |
Cristina Castagnetti |
title |
Dynamic Assessment of Masonry Towers Based on Terrestrial Radar Interferometer and Accelerometers |
title_short |
Dynamic Assessment of Masonry Towers Based on Terrestrial Radar Interferometer and Accelerometers |
title_full |
Dynamic Assessment of Masonry Towers Based on Terrestrial Radar Interferometer and Accelerometers |
title_fullStr |
Dynamic Assessment of Masonry Towers Based on Terrestrial Radar Interferometer and Accelerometers |
title_full_unstemmed |
Dynamic Assessment of Masonry Towers Based on Terrestrial Radar Interferometer and Accelerometers |
title_sort |
dynamic assessment of masonry towers based on terrestrial radar interferometer and accelerometers |
publisher |
MDPI AG |
series |
Sensors |
issn |
1424-8220 |
publishDate |
2019-03-01 |
description |
This paper discusses the performance of a terrestrial radar interferometer for the structural monitoring of ancient masonry towers. High-speed radar interferometry is an innovative and powerful remote sensing technique for the dynamic monitoring of large structures since it is contactless, non-destructive, and able to measure fast displacements on the order of tenths of millimeters. This methodology was tested on a masonry tower of great historical interest, the Saint Prospero bell tower (Northern Italy). To evaluate the quality of the results, data collected from the interferometer were compared and validated with those provided by two types of accelerometer-based measuring systems directly installed on the tower. Dynamic tests were conducted in operational conditions as well as during a bell concert. The first aimed at characterizing the dynamic behavior of the tower, while the second allowed to evaluate the bell swinging effects. Results showed a good agreement among the different measuring systems and demonstrated the potential of the radar interferometry for the dynamic monitoring of structures, with special focus on the need for an accurate design of the geometric aspects of the surveys. |
topic |
structural health monitoring ground-based radar interferometry real aperture radar accelerometers bell tower |
url |
http://www.mdpi.com/1424-8220/19/6/1319 |
work_keys_str_mv |
AT cristinacastagnetti dynamicassessmentofmasonrytowersbasedonterrestrialradarinterferometerandaccelerometers AT elisabassoli dynamicassessmentofmasonrytowersbasedonterrestrialradarinterferometerandaccelerometers AT lorisvincenzi dynamicassessmentofmasonrytowersbasedonterrestrialradarinterferometerandaccelerometers AT francescomancini dynamicassessmentofmasonrytowersbasedonterrestrialradarinterferometerandaccelerometers |
_version_ |
1726016280117379072 |