Closed-loop control of a GaAs-based singlet-triplet spin qubit with 99.5% gate fidelity and low leakage
The exchange interaction between spins poses considerable challenges for high-fidelity control of semiconductor spin qubits. Here, the authors use pulse optimization and closed-loop control to achieve a gate fidelity of 99.5% for exchange-based single-qubit gates of two-electron spin qubits in GaAs.
Main Authors: | , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Publishing Group
2020-08-01
|
Series: | Nature Communications |
Online Access: | https://doi.org/10.1038/s41467-020-17865-3 |
Summary: | The exchange interaction between spins poses considerable challenges for high-fidelity control of semiconductor spin qubits. Here, the authors use pulse optimization and closed-loop control to achieve a gate fidelity of 99.5% for exchange-based single-qubit gates of two-electron spin qubits in GaAs. |
---|---|
ISSN: | 2041-1723 |