The Importance of the Coordinate Transformation Process in Using Heterogeneous Data in Coastal and Marine Geographic Information System

Coastal and Marine Geographic Information Systems (CMGISs) permit to collect, manage, and analyze a great amount of heterogeneous data concerning coastal, sea, and ocean environments, e.g., nautical charts, topographic maps, remotely sensed images. To integrate those heterogeneous layers in CMGIS, p...

Full description

Bibliographic Details
Main Authors: Emanuele Alcaras, Claudio Parente, Andrea Vallario
Format: Article
Language:English
Published: MDPI AG 2020-09-01
Series:Journal of Marine Science and Engineering
Subjects:
GIS
Online Access:https://www.mdpi.com/2077-1312/8/9/708
Description
Summary:Coastal and Marine Geographic Information Systems (CMGISs) permit to collect, manage, and analyze a great amount of heterogeneous data concerning coastal, sea, and ocean environments, e.g., nautical charts, topographic maps, remotely sensed images. To integrate those heterogeneous layers in CMGIS, particular attention is necessary to ensure the perfect geo-localization of data, which is a basic requirement for the correct spatial analysis. In fact, the above-mentioned types of information sources are usually available in different cartographic projections, geodetic datum, and scale of representation. Therefore, automatic conversions supplied by Geographic Information System (GIS) software for layer overlay do not produce results with adequate positional accuracy. This paper aims to describe methodological aspects concerning different data integration in CMGIS in order to enhance its capability to handle topics of coastal and marine applications. Experiments are carried out to build a CMGIS of the Campania Region (Italy) harmonizing different data (maps and satellite images), which are heterogeneous for datum (World Geodetic System 1984 and European Datum 1950), projection (Mercator and Universal Transverse of Mercator), and scale of representation (large and medium scale). Results demonstrate that automatic conversion carried out by GIS software are insufficient to ensure levels of positional accuracy adequate for large scale representation. Therefore, additional operations such as those proposed in this work are necessary.
ISSN:2077-1312