Neural decision boundaries for maximal information transmission.
We consider here how to separate multidimensional signals into two categories, such that the binary decision transmits the maximum possible information about those signals. Our motivation comes from the nervous system, where neurons process multidimensional signals into a binary sequence of response...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2007-01-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC1920551?pdf=render |
id |
doaj-aba5574ea78148058cdd22579ab2383d |
---|---|
record_format |
Article |
spelling |
doaj-aba5574ea78148058cdd22579ab2383d2020-11-24T22:05:10ZengPublic Library of Science (PLoS)PLoS ONE1932-62032007-01-0127e64610.1371/journal.pone.0000646Neural decision boundaries for maximal information transmission.Tatyana SharpeeWilliam BialekWe consider here how to separate multidimensional signals into two categories, such that the binary decision transmits the maximum possible information about those signals. Our motivation comes from the nervous system, where neurons process multidimensional signals into a binary sequence of responses (spikes). In a small noise limit, we derive a general equation for the decision boundary that locally relates its curvature to the probability distribution of inputs. We show that for Gaussian inputs the optimal boundaries are planar, but for non-Gaussian inputs the curvature is nonzero. As an example, we consider exponentially distributed inputs, which are known to approximate a variety of signals from natural environment.http://europepmc.org/articles/PMC1920551?pdf=render |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Tatyana Sharpee William Bialek |
spellingShingle |
Tatyana Sharpee William Bialek Neural decision boundaries for maximal information transmission. PLoS ONE |
author_facet |
Tatyana Sharpee William Bialek |
author_sort |
Tatyana Sharpee |
title |
Neural decision boundaries for maximal information transmission. |
title_short |
Neural decision boundaries for maximal information transmission. |
title_full |
Neural decision boundaries for maximal information transmission. |
title_fullStr |
Neural decision boundaries for maximal information transmission. |
title_full_unstemmed |
Neural decision boundaries for maximal information transmission. |
title_sort |
neural decision boundaries for maximal information transmission. |
publisher |
Public Library of Science (PLoS) |
series |
PLoS ONE |
issn |
1932-6203 |
publishDate |
2007-01-01 |
description |
We consider here how to separate multidimensional signals into two categories, such that the binary decision transmits the maximum possible information about those signals. Our motivation comes from the nervous system, where neurons process multidimensional signals into a binary sequence of responses (spikes). In a small noise limit, we derive a general equation for the decision boundary that locally relates its curvature to the probability distribution of inputs. We show that for Gaussian inputs the optimal boundaries are planar, but for non-Gaussian inputs the curvature is nonzero. As an example, we consider exponentially distributed inputs, which are known to approximate a variety of signals from natural environment. |
url |
http://europepmc.org/articles/PMC1920551?pdf=render |
work_keys_str_mv |
AT tatyanasharpee neuraldecisionboundariesformaximalinformationtransmission AT williambialek neuraldecisionboundariesformaximalinformationtransmission |
_version_ |
1725827136203259904 |