Secure PHY Layer Key Generation in the Asymmetric Power Line Communication Channel
Leakage of information in power line communication (PLC) networks is a threat to privacy and security. A way to enhance security is to encode the transmitted information with the use of a secret key. If the communication channel exhibits common characteristics at both ends and these are unknown to a...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-04-01
|
Series: | Electronics |
Subjects: | |
Online Access: | https://www.mdpi.com/2079-9292/9/4/605 |
id |
doaj-aba433ee78074569b8eb5f33e14de13f |
---|---|
record_format |
Article |
spelling |
doaj-aba433ee78074569b8eb5f33e14de13f2020-11-25T02:26:48ZengMDPI AGElectronics2079-92922020-04-01960560510.3390/electronics9040605Secure PHY Layer Key Generation in the Asymmetric Power Line Communication ChannelFederico Passerini0Andrea M. Tonello1Department of Networked and Embedded Systems, University of Klagenfurt, Chair of Embedded Communication Systems, 9020 Klagenfurt am Wörthersee, AustriaDepartment of Networked and Embedded Systems, University of Klagenfurt, Chair of Embedded Communication Systems, 9020 Klagenfurt am Wörthersee, AustriaLeakage of information in power line communication (PLC) networks is a threat to privacy and security. A way to enhance security is to encode the transmitted information with the use of a secret key. If the communication channel exhibits common characteristics at both ends and these are unknown to a potential eavesdropper, then it is possible to locally generate a common secret key at the two communication ends without the need for sharing it through the broadcast channel. This is known as physical layer key generation. To this aim, known techniques have been developed exploiting the transfer function of symmetric channels. However, the PLC channel is in general not symmetric, but just reciprocal. Therefore, in this paper, we first analyze the characteristics of the channel to verify whether physical layer key generation can be implemented. Then, we propose two novel methods that exploit the reciprocity of the PLC channel to generate common information by the two intended users. This information is processed through different quantization techniques to generate secret keys locally. To assess the security of the generated keys, we analyze the spatial correlation of PLC channels. This allows verifying whether the eavesdropper’s channels are weakly correlated with the intended users’ channel. Consequently, it is found that the information leaked to a possible eavesdropper has very low correlation to the locally generated key. The analysis and proposed methods are validated on a measurement dataset.https://www.mdpi.com/2079-9292/9/4/605physical layer securitykey generationpower line communicationsreciprocal systems |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Federico Passerini Andrea M. Tonello |
spellingShingle |
Federico Passerini Andrea M. Tonello Secure PHY Layer Key Generation in the Asymmetric Power Line Communication Channel Electronics physical layer security key generation power line communications reciprocal systems |
author_facet |
Federico Passerini Andrea M. Tonello |
author_sort |
Federico Passerini |
title |
Secure PHY Layer Key Generation in the Asymmetric Power Line Communication Channel |
title_short |
Secure PHY Layer Key Generation in the Asymmetric Power Line Communication Channel |
title_full |
Secure PHY Layer Key Generation in the Asymmetric Power Line Communication Channel |
title_fullStr |
Secure PHY Layer Key Generation in the Asymmetric Power Line Communication Channel |
title_full_unstemmed |
Secure PHY Layer Key Generation in the Asymmetric Power Line Communication Channel |
title_sort |
secure phy layer key generation in the asymmetric power line communication channel |
publisher |
MDPI AG |
series |
Electronics |
issn |
2079-9292 |
publishDate |
2020-04-01 |
description |
Leakage of information in power line communication (PLC) networks is a threat to privacy and security. A way to enhance security is to encode the transmitted information with the use of a secret key. If the communication channel exhibits common characteristics at both ends and these are unknown to a potential eavesdropper, then it is possible to locally generate a common secret key at the two communication ends without the need for sharing it through the broadcast channel. This is known as physical layer key generation. To this aim, known techniques have been developed exploiting the transfer function of symmetric channels. However, the PLC channel is in general not symmetric, but just reciprocal. Therefore, in this paper, we first analyze the characteristics of the channel to verify whether physical layer key generation can be implemented. Then, we propose two novel methods that exploit the reciprocity of the PLC channel to generate common information by the two intended users. This information is processed through different quantization techniques to generate secret keys locally. To assess the security of the generated keys, we analyze the spatial correlation of PLC channels. This allows verifying whether the eavesdropper’s channels are weakly correlated with the intended users’ channel. Consequently, it is found that the information leaked to a possible eavesdropper has very low correlation to the locally generated key. The analysis and proposed methods are validated on a measurement dataset. |
topic |
physical layer security key generation power line communications reciprocal systems |
url |
https://www.mdpi.com/2079-9292/9/4/605 |
work_keys_str_mv |
AT federicopasserini securephylayerkeygenerationintheasymmetricpowerlinecommunicationchannel AT andreamtonello securephylayerkeygenerationintheasymmetricpowerlinecommunicationchannel |
_version_ |
1724845503003230208 |