Vascular Wall-Resident Multipotent Stem Cells of Mesenchymal Nature within the Process of Vascular Remodeling: Cellular Basis, Clinical Relevance, and Implications for Stem Cell Therapy
Until some years ago, the bone marrow and the endothelial cell compartment lining the vessel lumen (subendothelial space) were thought to be the only sources providing vascular progenitor cells. Now, the vessel wall, in particular, the vascular adventitia, has been established as a niche for differe...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2016-01-01
|
Series: | Stem Cells International |
Online Access: | http://dx.doi.org/10.1155/2016/1905846 |
id |
doaj-ab9560b771574556a31aa2d4f2f03526 |
---|---|
record_format |
Article |
spelling |
doaj-ab9560b771574556a31aa2d4f2f035262020-11-24T23:15:14ZengHindawi LimitedStem Cells International1687-966X1687-96782016-01-01201610.1155/2016/19058461905846Vascular Wall-Resident Multipotent Stem Cells of Mesenchymal Nature within the Process of Vascular Remodeling: Cellular Basis, Clinical Relevance, and Implications for Stem Cell TherapyDiana Klein0Institute for Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital, Virchowstrasse 173, North Rhine-Westphalia, 45122 Essen, GermanyUntil some years ago, the bone marrow and the endothelial cell compartment lining the vessel lumen (subendothelial space) were thought to be the only sources providing vascular progenitor cells. Now, the vessel wall, in particular, the vascular adventitia, has been established as a niche for different types of stem and progenitor cells with the capacity to differentiate into both vascular and nonvascular cells. Herein, vascular wall-resident multipotent stem cells of mesenchymal nature (VW-MPSCs) have gained importance because of their large range of differentiation in combination with their distribution throughout the postnatal organism which is related to their existence in the adventitial niche, respectively. In general, mesenchymal stem cells, also designated as mesenchymal stromal cells (MSCs), contribute to the maintenance of organ integrity by their ability to replace defunct cells or secrete cytokines locally and thus support repair and healing processes of the affected tissues. This review will focus on the central role of VW-MPSCs within vascular reconstructing processes (vascular remodeling) which are absolute prerequisite to preserve the sensitive relationship between resilience and stability of the vessel wall. Further, a particular advantage for the therapeutic application of VW-MPSCs for improving vascular function or preventing vascular damage will be discussed.http://dx.doi.org/10.1155/2016/1905846 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Diana Klein |
spellingShingle |
Diana Klein Vascular Wall-Resident Multipotent Stem Cells of Mesenchymal Nature within the Process of Vascular Remodeling: Cellular Basis, Clinical Relevance, and Implications for Stem Cell Therapy Stem Cells International |
author_facet |
Diana Klein |
author_sort |
Diana Klein |
title |
Vascular Wall-Resident Multipotent Stem Cells of Mesenchymal Nature within the Process of Vascular Remodeling: Cellular Basis, Clinical Relevance, and Implications for Stem Cell Therapy |
title_short |
Vascular Wall-Resident Multipotent Stem Cells of Mesenchymal Nature within the Process of Vascular Remodeling: Cellular Basis, Clinical Relevance, and Implications for Stem Cell Therapy |
title_full |
Vascular Wall-Resident Multipotent Stem Cells of Mesenchymal Nature within the Process of Vascular Remodeling: Cellular Basis, Clinical Relevance, and Implications for Stem Cell Therapy |
title_fullStr |
Vascular Wall-Resident Multipotent Stem Cells of Mesenchymal Nature within the Process of Vascular Remodeling: Cellular Basis, Clinical Relevance, and Implications for Stem Cell Therapy |
title_full_unstemmed |
Vascular Wall-Resident Multipotent Stem Cells of Mesenchymal Nature within the Process of Vascular Remodeling: Cellular Basis, Clinical Relevance, and Implications for Stem Cell Therapy |
title_sort |
vascular wall-resident multipotent stem cells of mesenchymal nature within the process of vascular remodeling: cellular basis, clinical relevance, and implications for stem cell therapy |
publisher |
Hindawi Limited |
series |
Stem Cells International |
issn |
1687-966X 1687-9678 |
publishDate |
2016-01-01 |
description |
Until some years ago, the bone marrow and the endothelial cell compartment lining the vessel lumen (subendothelial space) were thought to be the only sources providing vascular progenitor cells. Now, the vessel wall, in particular, the vascular adventitia, has been established as a niche for different types of stem and progenitor cells with the capacity to differentiate into both vascular and nonvascular cells. Herein, vascular wall-resident multipotent stem cells of mesenchymal nature (VW-MPSCs) have gained importance because of their large range of differentiation in combination with their distribution throughout the postnatal organism which is related to their existence in the adventitial niche, respectively. In general, mesenchymal stem cells, also designated as mesenchymal stromal cells (MSCs), contribute to the maintenance of organ integrity by their ability to replace defunct cells or secrete cytokines locally and thus support repair and healing processes of the affected tissues. This review will focus on the central role of VW-MPSCs within vascular reconstructing processes (vascular remodeling) which are absolute prerequisite to preserve the sensitive relationship between resilience and stability of the vessel wall. Further, a particular advantage for the therapeutic application of VW-MPSCs for improving vascular function or preventing vascular damage will be discussed. |
url |
http://dx.doi.org/10.1155/2016/1905846 |
work_keys_str_mv |
AT dianaklein vascularwallresidentmultipotentstemcellsofmesenchymalnaturewithintheprocessofvascularremodelingcellularbasisclinicalrelevanceandimplicationsforstemcelltherapy |
_version_ |
1725591566027849728 |