On symmetric biadditive mappings of semiprime rings

Let R be a ring with centre Z(R). A mapping D(., .) : R× R −→ R is said to be symmetric if D(x, y) = D(y, x) for all x, y ∈ R. A mapping f : R −→ R defined by f(x) = D(x, x) for all x ∈ R, is called trace of D. It is obvious that in the case D(., .) : R × R −→ R is a symmetric mapping, which is also...

Full description

Bibliographic Details
Main Authors: Asma Ali, Khalid Ali Hamdin, Shahoor Khan
Format: Article
Language:English
Published: Sociedade Brasileira de Matemática 2017-09-01
Series:Boletim da Sociedade Paranaense de Matemática
Subjects:
Online Access:http://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/23568
id doaj-ab12a02ab1eb4c559114f7677c045fcd
record_format Article
spelling doaj-ab12a02ab1eb4c559114f7677c045fcd2020-11-24T22:26:39ZengSociedade Brasileira de MatemáticaBoletim da Sociedade Paranaense de Matemática0037-87122175-11882017-09-0135192210.5269/bspm.v35i1.2356812846On symmetric biadditive mappings of semiprime ringsAsma Ali0Khalid Ali Hamdin1Shahoor Khan2Department of Mathematics, Aligarh Muslim University IndiaDepartment of Mathematics Aligarh Muslim University, Aligarh-202002 IndiaDepartment of Mathematics Aligarh Muslim University, Aligarh-202002 IndiaLet R be a ring with centre Z(R). A mapping D(., .) : R× R −→ R is said to be symmetric if D(x, y) = D(y, x) for all x, y ∈ R. A mapping f : R −→ R defined by f(x) = D(x, x) for all x ∈ R, is called trace of D. It is obvious that in the case D(., .) : R × R −→ R is a symmetric mapping, which is also biadditive (i.e. additive in both arguments), the trace f of D satisfies the relation f(x + y) = f(x) + f(y) + 2D(x, y), for all x, y ∈ R. In this paper we prove that a nonzero left ideal L of a 2-torsion free semiprime ring R is central if it satisfies any one of the following properties: (i) f(xy) ∓ [x, y] ∈ Z(R), (ii) f(xy) ∓ [y, x] ∈ Z(R), (iii) f(xy) ∓ xy ∈ Z(R), (iv) f(xy)∓yx ∈ Z(R), (v) f([x, y])∓[x, y] ∈ Z(R), (vi) f([x, y])∓[y, x] ∈ Z(R), (vii) f([x, y])∓xy ∈ Z(R), (viii) f([x, y])∓yx ∈ Z(R), (ix) f(xy)∓f(x)∓[x, y] ∈ Z(R), (x) f(xy)∓f(y)∓[x, y] ∈ Z(R), (xi) f([x, y])∓f(x)∓[x, y] ∈ Z(R), (xii) f([x, y])∓f(y)∓ [x, y] ∈ Z(R), (xiii) f([x, y])∓f(xy)∓[x, y] ∈ Z(R), (xiv) f([x, y])∓f(xy)∓[y, x] ∈ Z(R), (xv) f(x)f(y) ∓ [x, y] ∈ Z(R), (xvi) f(x)f(y) ∓ [y, x] ∈ Z(R), (xvii) f(x)f(y) ∓ xy ∈ Z(R), (xviii) f(x)f(y) ∓ yx ∈ Z(R), (xix) f(x) ◦ f(y) ∓ [x, y] ∈ Z(R), (xx) f(x) ◦ f(y) ∓ xy ∈ Z(R), (xxi) f(x) ◦ f(y) ∓ yx ∈ Z(R), (xxii) f(x)f(y) ∓ x ◦ y ∈ Z(R), (xxiii) [x, y] − f(xy) + f(yx) ∈ Z(R), for all x, y ∈ R, where f stands for the trace of a symmetric biadditive mapping D(., .) : R × R −→ R.http://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/23568Semiprime ringsLeft idealsSymmetric biadditive mappings
collection DOAJ
language English
format Article
sources DOAJ
author Asma Ali
Khalid Ali Hamdin
Shahoor Khan
spellingShingle Asma Ali
Khalid Ali Hamdin
Shahoor Khan
On symmetric biadditive mappings of semiprime rings
Boletim da Sociedade Paranaense de Matemática
Semiprime rings
Left ideals
Symmetric biadditive mappings
author_facet Asma Ali
Khalid Ali Hamdin
Shahoor Khan
author_sort Asma Ali
title On symmetric biadditive mappings of semiprime rings
title_short On symmetric biadditive mappings of semiprime rings
title_full On symmetric biadditive mappings of semiprime rings
title_fullStr On symmetric biadditive mappings of semiprime rings
title_full_unstemmed On symmetric biadditive mappings of semiprime rings
title_sort on symmetric biadditive mappings of semiprime rings
publisher Sociedade Brasileira de Matemática
series Boletim da Sociedade Paranaense de Matemática
issn 0037-8712
2175-1188
publishDate 2017-09-01
description Let R be a ring with centre Z(R). A mapping D(., .) : R× R −→ R is said to be symmetric if D(x, y) = D(y, x) for all x, y ∈ R. A mapping f : R −→ R defined by f(x) = D(x, x) for all x ∈ R, is called trace of D. It is obvious that in the case D(., .) : R × R −→ R is a symmetric mapping, which is also biadditive (i.e. additive in both arguments), the trace f of D satisfies the relation f(x + y) = f(x) + f(y) + 2D(x, y), for all x, y ∈ R. In this paper we prove that a nonzero left ideal L of a 2-torsion free semiprime ring R is central if it satisfies any one of the following properties: (i) f(xy) ∓ [x, y] ∈ Z(R), (ii) f(xy) ∓ [y, x] ∈ Z(R), (iii) f(xy) ∓ xy ∈ Z(R), (iv) f(xy)∓yx ∈ Z(R), (v) f([x, y])∓[x, y] ∈ Z(R), (vi) f([x, y])∓[y, x] ∈ Z(R), (vii) f([x, y])∓xy ∈ Z(R), (viii) f([x, y])∓yx ∈ Z(R), (ix) f(xy)∓f(x)∓[x, y] ∈ Z(R), (x) f(xy)∓f(y)∓[x, y] ∈ Z(R), (xi) f([x, y])∓f(x)∓[x, y] ∈ Z(R), (xii) f([x, y])∓f(y)∓ [x, y] ∈ Z(R), (xiii) f([x, y])∓f(xy)∓[x, y] ∈ Z(R), (xiv) f([x, y])∓f(xy)∓[y, x] ∈ Z(R), (xv) f(x)f(y) ∓ [x, y] ∈ Z(R), (xvi) f(x)f(y) ∓ [y, x] ∈ Z(R), (xvii) f(x)f(y) ∓ xy ∈ Z(R), (xviii) f(x)f(y) ∓ yx ∈ Z(R), (xix) f(x) ◦ f(y) ∓ [x, y] ∈ Z(R), (xx) f(x) ◦ f(y) ∓ xy ∈ Z(R), (xxi) f(x) ◦ f(y) ∓ yx ∈ Z(R), (xxii) f(x)f(y) ∓ x ◦ y ∈ Z(R), (xxiii) [x, y] − f(xy) + f(yx) ∈ Z(R), for all x, y ∈ R, where f stands for the trace of a symmetric biadditive mapping D(., .) : R × R −→ R.
topic Semiprime rings
Left ideals
Symmetric biadditive mappings
url http://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/23568
work_keys_str_mv AT asmaali onsymmetricbiadditivemappingsofsemiprimerings
AT khalidalihamdin onsymmetricbiadditivemappingsofsemiprimerings
AT shahoorkhan onsymmetricbiadditivemappingsofsemiprimerings
_version_ 1725752233853714432