The effect of small-sided games with different levels of opposition on the tactical behaviour of young footballers with different levels of sport expertise.

To optimize players' tactical abilities, coaches need to design training sessions with representative learning tasks, such as, small-sided games. Moreover, it is necessary to adapt the complexity of the tasks to the skill level of the athletes to maximally improve their perceptual, visual and a...

Full description

Bibliographic Details
Main Authors: Alba Práxedes, Alberto Moreno, Alexander Gil-Arias, Fernando Claver, Fernando Del Villar
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2018-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC5761879?pdf=render
Description
Summary:To optimize players' tactical abilities, coaches need to design training sessions with representative learning tasks, such as, small-sided games. Moreover, it is necessary to adapt the complexity of the tasks to the skill level of the athletes to maximally improve their perceptual, visual and attentive abilities. The objective of this study was to analyze the effect of two teaching programs, each utilizing modified games with varied levels of opposition, on decision-making and action execution in young players with different levels of sports expertise. 19 football players (U12), separated into two ability groups (Average versus Low skill-level), participated in a series of training sessions that were spread over 4 phases: Pre-intervention 1, Intervention 1 (teaching program based on modified games with numerical superiority in attack), Pre-intervention 2 and Intervention 2 (teaching program based on modified games with numerical equality). Each intervention phase lasted 14 sessions. Decision-making and the execution of pass action during league matches over the same period were evaluated using the Game Performance Evaluation Tool (GPET). The Average skill-level group showed significant differences after the first intervention in decision-making and execution of the pass action (decision-making, p = .015; execution, p = .031), but not after the second intervention (decision-making, p = 1.000; execution, p = 1.000). For the Low skill-level group, significant differences were only observed in the execution of passing between the first and last phases (p = .014). These findings seem to indicate that for groups with an average level of expertise, training with numerical superiority in attack provides players with more time to make better decisions and to better execute actions. However, for lower-level groups programs may take longer to facilitate improvement. Nevertheless, numerical equality did not result in improvement for either group.
ISSN:1932-6203