Respons Dinamik Pelat Beton Akibat Beban Kendaraan yang Bergerak dengan Kecepatan Konstan

This analysis studies about the dynamic response of isotropic slab with the semi rigid type of edge conditions which is solved by the Modified Bolotin Method. The dynamic response mostly depends on the characteristics of the slab and the velocity of the transverse load acting on the slab. This analy...

Full description

Bibliographic Details
Main Authors: Yenny Untari Liucius, Sofia W Alisjahbana
Format: Article
Language:English
Published: Universitas Diponegoro 2019-07-01
Series:Media Komunikasi Teknik Sipil
Subjects:
Online Access:https://ejournal.undip.ac.id/index.php/mkts/article/view/20011
id doaj-ab0f1896ee8c4bc48c46df2d1e92b5d5
record_format Article
spelling doaj-ab0f1896ee8c4bc48c46df2d1e92b5d52020-11-24T22:01:01ZengUniversitas DiponegoroMedia Komunikasi Teknik Sipil0854-18092549-67782019-07-01251909710.14710/mkts.v25i1.2001115334Respons Dinamik Pelat Beton Akibat Beban Kendaraan yang Bergerak dengan Kecepatan KonstanYenny Untari Liucius0Sofia W Alisjahbana1Tarumanagara University JakartaUniversitas Bakrie JakartaThis analysis studies about the dynamic response of isotropic slab with the semi rigid type of edge conditions which is solved by the Modified Bolotin Method. The dynamic response mostly depends on the characteristics of the slab and the velocity of the transverse load acting on the slab. This analysis uses 10 km/h, 20 km/h, and 30 km/h as the velocity of the transverse load, and 110 km/h as the comparing velocity. Results show that maximum dynamic responses for each velocity does not always occur on the center of the slab, so the characteristics of the slab may be vary. The dynamic response is closest to maximum when the velocity of the load is 110 km/h because it is closer to the critical velocity of the system which is 112 km/h. This analysis assumed the slab is used for the bus’ parking ramp. Thus with the 10 km/h until 30 km/h velocity assumption for parking ramp is still quite safe because the velocity is far below the critical velocity of the system. Also the dynamic response of the system is far lower than the maximum response of slab.https://ejournal.undip.ac.id/index.php/mkts/article/view/20011Semi rigid, isotropic, modified bolotin method, critical velocity
collection DOAJ
language English
format Article
sources DOAJ
author Yenny Untari Liucius
Sofia W Alisjahbana
spellingShingle Yenny Untari Liucius
Sofia W Alisjahbana
Respons Dinamik Pelat Beton Akibat Beban Kendaraan yang Bergerak dengan Kecepatan Konstan
Media Komunikasi Teknik Sipil
Semi rigid, isotropic, modified bolotin method, critical velocity
author_facet Yenny Untari Liucius
Sofia W Alisjahbana
author_sort Yenny Untari Liucius
title Respons Dinamik Pelat Beton Akibat Beban Kendaraan yang Bergerak dengan Kecepatan Konstan
title_short Respons Dinamik Pelat Beton Akibat Beban Kendaraan yang Bergerak dengan Kecepatan Konstan
title_full Respons Dinamik Pelat Beton Akibat Beban Kendaraan yang Bergerak dengan Kecepatan Konstan
title_fullStr Respons Dinamik Pelat Beton Akibat Beban Kendaraan yang Bergerak dengan Kecepatan Konstan
title_full_unstemmed Respons Dinamik Pelat Beton Akibat Beban Kendaraan yang Bergerak dengan Kecepatan Konstan
title_sort respons dinamik pelat beton akibat beban kendaraan yang bergerak dengan kecepatan konstan
publisher Universitas Diponegoro
series Media Komunikasi Teknik Sipil
issn 0854-1809
2549-6778
publishDate 2019-07-01
description This analysis studies about the dynamic response of isotropic slab with the semi rigid type of edge conditions which is solved by the Modified Bolotin Method. The dynamic response mostly depends on the characteristics of the slab and the velocity of the transverse load acting on the slab. This analysis uses 10 km/h, 20 km/h, and 30 km/h as the velocity of the transverse load, and 110 km/h as the comparing velocity. Results show that maximum dynamic responses for each velocity does not always occur on the center of the slab, so the characteristics of the slab may be vary. The dynamic response is closest to maximum when the velocity of the load is 110 km/h because it is closer to the critical velocity of the system which is 112 km/h. This analysis assumed the slab is used for the bus’ parking ramp. Thus with the 10 km/h until 30 km/h velocity assumption for parking ramp is still quite safe because the velocity is far below the critical velocity of the system. Also the dynamic response of the system is far lower than the maximum response of slab.
topic Semi rigid, isotropic, modified bolotin method, critical velocity
url https://ejournal.undip.ac.id/index.php/mkts/article/view/20011
work_keys_str_mv AT yennyuntariliucius responsdinamikpelatbetonakibatbebankendaraanyangbergerakdengankecepatankonstan
AT sofiawalisjahbana responsdinamikpelatbetonakibatbebankendaraanyangbergerakdengankecepatankonstan
_version_ 1725842266900135936