Klasifikasi Data Berat Bayi Lahir Menggunakan Weighted Probabilistic Neural Network (WPNN) (Studi Kasus di Rumah Sakit Islam Sultan Agung Semarang)
Low Birthweight (LBW) is one of the causes of infant mortality. Birthweight is the weight of babies who weighed within one hour after birth. Low birthweight has been defined by the World Health Organization (WHO) as weight at birth of less than 2,500 grams (5.5 pounds). There are several factors tha...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Universitas Diponegoro
2017-06-01
|
Series: | Media Statistika |
Online Access: | https://ejournal.undip.ac.id/index.php/media_statistika/article/view/15602 |
id |
doaj-aaf6290de9ce4f18b80dbe3b4a0657b2 |
---|---|
record_format |
Article |
spelling |
doaj-aaf6290de9ce4f18b80dbe3b4a0657b22020-11-25T03:13:17ZengUniversitas DiponegoroMedia Statistika1979-36932477-06472017-06-01101617010.14710/medstat.10.1.61-7011715Klasifikasi Data Berat Bayi Lahir Menggunakan Weighted Probabilistic Neural Network (WPNN) (Studi Kasus di Rumah Sakit Islam Sultan Agung Semarang)Hasbi Yasin0Dwi Ispriyansti1Departemen Statistika, Fakultas Sains dan Matematika, Universitas DiponegoroDepartemen Statistika, Fakultas Sains dan Matematika, Universitas DiponegoroLow Birthweight (LBW) is one of the causes of infant mortality. Birthweight is the weight of babies who weighed within one hour after birth. Low birthweight has been defined by the World Health Organization (WHO) as weight at birth of less than 2,500 grams (5.5 pounds). There are several factors that influence the BWI such as maternal age, length of gestation, body weight, height, blood pressure, hemoglobin and parity. This study uses a Weighted Probabilistic Neural Network (WPNN) to classify the birthweight in RSI Sultan Agung Semarang based on these factors. The results showed that the birthweight classification using WPNN models have a very high accuracy. This is shown by the model accuracy of 98.75% using the training data and 94.44% using the testing data. Keywords: Birthweight, Classification, LBW, WPNN.https://ejournal.undip.ac.id/index.php/media_statistika/article/view/15602 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Hasbi Yasin Dwi Ispriyansti |
spellingShingle |
Hasbi Yasin Dwi Ispriyansti Klasifikasi Data Berat Bayi Lahir Menggunakan Weighted Probabilistic Neural Network (WPNN) (Studi Kasus di Rumah Sakit Islam Sultan Agung Semarang) Media Statistika |
author_facet |
Hasbi Yasin Dwi Ispriyansti |
author_sort |
Hasbi Yasin |
title |
Klasifikasi Data Berat Bayi Lahir Menggunakan Weighted Probabilistic Neural Network (WPNN) (Studi Kasus di Rumah Sakit Islam Sultan Agung Semarang) |
title_short |
Klasifikasi Data Berat Bayi Lahir Menggunakan Weighted Probabilistic Neural Network (WPNN) (Studi Kasus di Rumah Sakit Islam Sultan Agung Semarang) |
title_full |
Klasifikasi Data Berat Bayi Lahir Menggunakan Weighted Probabilistic Neural Network (WPNN) (Studi Kasus di Rumah Sakit Islam Sultan Agung Semarang) |
title_fullStr |
Klasifikasi Data Berat Bayi Lahir Menggunakan Weighted Probabilistic Neural Network (WPNN) (Studi Kasus di Rumah Sakit Islam Sultan Agung Semarang) |
title_full_unstemmed |
Klasifikasi Data Berat Bayi Lahir Menggunakan Weighted Probabilistic Neural Network (WPNN) (Studi Kasus di Rumah Sakit Islam Sultan Agung Semarang) |
title_sort |
klasifikasi data berat bayi lahir menggunakan weighted probabilistic neural network (wpnn) (studi kasus di rumah sakit islam sultan agung semarang) |
publisher |
Universitas Diponegoro |
series |
Media Statistika |
issn |
1979-3693 2477-0647 |
publishDate |
2017-06-01 |
description |
Low Birthweight (LBW) is one of the causes of infant mortality. Birthweight is the weight of babies who weighed within one hour after birth. Low birthweight has been defined by the World Health Organization (WHO) as weight at birth of less than 2,500 grams (5.5 pounds). There are several factors that influence the BWI such as maternal age, length of gestation, body weight, height, blood pressure, hemoglobin and parity. This study uses a Weighted Probabilistic Neural Network (WPNN) to classify the birthweight in RSI Sultan Agung Semarang based on these factors. The results showed that the birthweight classification using WPNN models have a very high accuracy. This is shown by the model accuracy of 98.75% using the training data and 94.44% using the testing data.
Keywords:
Birthweight, Classification, LBW, WPNN. |
url |
https://ejournal.undip.ac.id/index.php/media_statistika/article/view/15602 |
work_keys_str_mv |
AT hasbiyasin klasifikasidataberatbayilahirmenggunakanweightedprobabilisticneuralnetworkwpnnstudikasusdirumahsakitislamsultanagungsemarang AT dwiispriyansti klasifikasidataberatbayilahirmenggunakanweightedprobabilisticneuralnetworkwpnnstudikasusdirumahsakitislamsultanagungsemarang |
_version_ |
1724647640438669312 |