Klasifikasi Data Berat Bayi Lahir Menggunakan Weighted Probabilistic Neural Network (WPNN) (Studi Kasus di Rumah Sakit Islam Sultan Agung Semarang)

Low Birthweight (LBW) is one of the causes of infant mortality. Birthweight is the weight of babies who weighed within one hour after birth. Low birthweight has been defined by the World Health Organization (WHO) as weight at birth of less than 2,500 grams (5.5 pounds). There are several factors tha...

Full description

Bibliographic Details
Main Authors: Hasbi Yasin, Dwi Ispriyansti
Format: Article
Language:English
Published: Universitas Diponegoro 2017-06-01
Series:Media Statistika
Online Access:https://ejournal.undip.ac.id/index.php/media_statistika/article/view/15602
id doaj-aaf6290de9ce4f18b80dbe3b4a0657b2
record_format Article
spelling doaj-aaf6290de9ce4f18b80dbe3b4a0657b22020-11-25T03:13:17ZengUniversitas DiponegoroMedia Statistika1979-36932477-06472017-06-01101617010.14710/medstat.10.1.61-7011715Klasifikasi Data Berat Bayi Lahir Menggunakan Weighted Probabilistic Neural Network (WPNN) (Studi Kasus di Rumah Sakit Islam Sultan Agung Semarang)Hasbi Yasin0Dwi Ispriyansti1Departemen Statistika, Fakultas Sains dan Matematika, Universitas DiponegoroDepartemen Statistika, Fakultas Sains dan Matematika, Universitas DiponegoroLow Birthweight (LBW) is one of the causes of infant mortality. Birthweight is the weight of babies who weighed within one hour after birth. Low birthweight has been defined by the World Health Organization (WHO) as weight at birth of less than 2,500 grams (5.5 pounds). There are several factors that influence the BWI such as maternal age, length of gestation, body weight, height, blood pressure, hemoglobin and parity. This study uses a Weighted Probabilistic Neural Network (WPNN) to classify the birthweight in RSI Sultan Agung Semarang based on these factors. The results showed that the birthweight classification using WPNN models have a very high accuracy. This is shown by the model accuracy of 98.75% using the training data and 94.44% using the testing data. Keywords: Birthweight, Classification, LBW, WPNN.https://ejournal.undip.ac.id/index.php/media_statistika/article/view/15602
collection DOAJ
language English
format Article
sources DOAJ
author Hasbi Yasin
Dwi Ispriyansti
spellingShingle Hasbi Yasin
Dwi Ispriyansti
Klasifikasi Data Berat Bayi Lahir Menggunakan Weighted Probabilistic Neural Network (WPNN) (Studi Kasus di Rumah Sakit Islam Sultan Agung Semarang)
Media Statistika
author_facet Hasbi Yasin
Dwi Ispriyansti
author_sort Hasbi Yasin
title Klasifikasi Data Berat Bayi Lahir Menggunakan Weighted Probabilistic Neural Network (WPNN) (Studi Kasus di Rumah Sakit Islam Sultan Agung Semarang)
title_short Klasifikasi Data Berat Bayi Lahir Menggunakan Weighted Probabilistic Neural Network (WPNN) (Studi Kasus di Rumah Sakit Islam Sultan Agung Semarang)
title_full Klasifikasi Data Berat Bayi Lahir Menggunakan Weighted Probabilistic Neural Network (WPNN) (Studi Kasus di Rumah Sakit Islam Sultan Agung Semarang)
title_fullStr Klasifikasi Data Berat Bayi Lahir Menggunakan Weighted Probabilistic Neural Network (WPNN) (Studi Kasus di Rumah Sakit Islam Sultan Agung Semarang)
title_full_unstemmed Klasifikasi Data Berat Bayi Lahir Menggunakan Weighted Probabilistic Neural Network (WPNN) (Studi Kasus di Rumah Sakit Islam Sultan Agung Semarang)
title_sort klasifikasi data berat bayi lahir menggunakan weighted probabilistic neural network (wpnn) (studi kasus di rumah sakit islam sultan agung semarang)
publisher Universitas Diponegoro
series Media Statistika
issn 1979-3693
2477-0647
publishDate 2017-06-01
description Low Birthweight (LBW) is one of the causes of infant mortality. Birthweight is the weight of babies who weighed within one hour after birth. Low birthweight has been defined by the World Health Organization (WHO) as weight at birth of less than 2,500 grams (5.5 pounds). There are several factors that influence the BWI such as maternal age, length of gestation, body weight, height, blood pressure, hemoglobin and parity. This study uses a Weighted Probabilistic Neural Network (WPNN) to classify the birthweight in RSI Sultan Agung Semarang based on these factors. The results showed that the birthweight classification using WPNN models have a very high accuracy. This is shown by the model accuracy of 98.75% using the training data and 94.44% using the testing data. Keywords: Birthweight, Classification, LBW, WPNN.
url https://ejournal.undip.ac.id/index.php/media_statistika/article/view/15602
work_keys_str_mv AT hasbiyasin klasifikasidataberatbayilahirmenggunakanweightedprobabilisticneuralnetworkwpnnstudikasusdirumahsakitislamsultanagungsemarang
AT dwiispriyansti klasifikasidataberatbayilahirmenggunakanweightedprobabilisticneuralnetworkwpnnstudikasusdirumahsakitislamsultanagungsemarang
_version_ 1724647640438669312