The Establishment of Bisphenol A Sensing System Utilizing Molecularly Imprinted Polymer Receptor and Electrochemical Determination

A sensing system of bisphenol A (BPA) based on the electrochemical detection utilizing molecularly imprinted polymer (MIP) as a receptor of BPA was investigated. MIP for BPA was polymerized thermally from 4-vinylpyridine as a functional monomer and ethylene dimethacrylate (EDMA) as a cross-linker an...

Full description

Bibliographic Details
Main Authors: Izumi Kubo, Nobuyuki Yokota, Yuko Nakane, Yusuke Fuchiwaki
Format: Article
Language:English
Published: Hindawi Limited 2011-01-01
Series:International Journal of Electrochemistry
Online Access:http://dx.doi.org/10.4061/2011/534936
Description
Summary:A sensing system of bisphenol A (BPA) based on the electrochemical detection utilizing molecularly imprinted polymer (MIP) as a receptor of BPA was investigated. MIP for BPA was polymerized thermally from 4-vinylpyridine as a functional monomer and ethylene dimethacrylate (EDMA) as a cross-linker and served to prepare an MIP packed column. BPA in an aqueous solution was adsorbed to an MIP packed column and eluted by acetonitrile/phosphate buffer (60/40, v/v). From aqueous solution, BPA was adsorbed to the column and eluted completely in the eluent. The eluted BPA was electrochemically detected by cyclic voltammetry. Optimum pH and scan rate were 7.0 and 0.1 V/s in phosphate buffer. Electrochemical detection of BPA in acetonitrile/phosphate buffer was performed, and linear relationship between BPA and anodic peak current was observed at the range of 10–100 μM. In the eluent, anodic peak current of BPA was observed around 650 mV.
ISSN:2090-3537