Targeting of intracellular Ca2+ stores as a therapeutic strategy against age-related neurotoxicities
Abstract Calcium dysregulation often underlies pathologies associated with aging and age-associated neurodegenerative diseases. Cells express a unique pattern of Ca2+ channels and pumps geared to fulfill specific physiological requirements and there is a decline in the fidelity of these processes wi...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Publishing Group
2020-08-01
|
Series: | npj Aging and Mechanisms of Disease |
Online Access: | https://doi.org/10.1038/s41514-020-00048-1 |
id |
doaj-aab8f71534334401ab0fe2d1f969c108 |
---|---|
record_format |
Article |
spelling |
doaj-aab8f71534334401ab0fe2d1f969c1082021-08-29T11:14:20ZengNature Publishing Groupnpj Aging and Mechanisms of Disease2056-39732020-08-01611910.1038/s41514-020-00048-1Targeting of intracellular Ca2+ stores as a therapeutic strategy against age-related neurotoxicitiesJoshua Goldberg0Antonio Currais1Gamze Ates2Ling Huang3Maxim Shokhirev4Pamela Maher5David Schubert6The Salk Institute for Biological StudiesThe Salk Institute for Biological StudiesThe Salk Institute for Biological StudiesThe Salk Institute for Biological StudiesThe Salk Institute for Biological StudiesThe Salk Institute for Biological StudiesThe Salk Institute for Biological StudiesAbstract Calcium dysregulation often underlies pathologies associated with aging and age-associated neurodegenerative diseases. Cells express a unique pattern of Ca2+ channels and pumps geared to fulfill specific physiological requirements and there is a decline in the fidelity of these processes with age and age-associated diseases. J147 is an Alzheimer’s disease (AD) drug candidate that was identified using a phenotypic screening platform based upon age-related brain toxicities that are mediated by changes in calcium metabolism. The molecular target for J147 is the α-F1-ATP synthase (ATP5A). J147 has therapeutic efficacy in multiple mouse models of AD and accelerated aging and extends life span in flies. A bioinformatics analysis of gene expression in rapidly aging SAMP8 mice during the last quadrant of their life span shows that J147 has a significant effect on ion transport pathways that are changed with aging, making their expression look more like that of younger animals. The molecular basis of these changes was then investigated in cell culture neurotoxicity assays that were the primary screen in the development of J147. Here we show that J147 and its molecular target, ATP synthase, regulate the maintenance of store-operated calcium entry (SOCE) and cell death during acute neurotoxicity.https://doi.org/10.1038/s41514-020-00048-1 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Joshua Goldberg Antonio Currais Gamze Ates Ling Huang Maxim Shokhirev Pamela Maher David Schubert |
spellingShingle |
Joshua Goldberg Antonio Currais Gamze Ates Ling Huang Maxim Shokhirev Pamela Maher David Schubert Targeting of intracellular Ca2+ stores as a therapeutic strategy against age-related neurotoxicities npj Aging and Mechanisms of Disease |
author_facet |
Joshua Goldberg Antonio Currais Gamze Ates Ling Huang Maxim Shokhirev Pamela Maher David Schubert |
author_sort |
Joshua Goldberg |
title |
Targeting of intracellular Ca2+ stores as a therapeutic strategy against age-related neurotoxicities |
title_short |
Targeting of intracellular Ca2+ stores as a therapeutic strategy against age-related neurotoxicities |
title_full |
Targeting of intracellular Ca2+ stores as a therapeutic strategy against age-related neurotoxicities |
title_fullStr |
Targeting of intracellular Ca2+ stores as a therapeutic strategy against age-related neurotoxicities |
title_full_unstemmed |
Targeting of intracellular Ca2+ stores as a therapeutic strategy against age-related neurotoxicities |
title_sort |
targeting of intracellular ca2+ stores as a therapeutic strategy against age-related neurotoxicities |
publisher |
Nature Publishing Group |
series |
npj Aging and Mechanisms of Disease |
issn |
2056-3973 |
publishDate |
2020-08-01 |
description |
Abstract Calcium dysregulation often underlies pathologies associated with aging and age-associated neurodegenerative diseases. Cells express a unique pattern of Ca2+ channels and pumps geared to fulfill specific physiological requirements and there is a decline in the fidelity of these processes with age and age-associated diseases. J147 is an Alzheimer’s disease (AD) drug candidate that was identified using a phenotypic screening platform based upon age-related brain toxicities that are mediated by changes in calcium metabolism. The molecular target for J147 is the α-F1-ATP synthase (ATP5A). J147 has therapeutic efficacy in multiple mouse models of AD and accelerated aging and extends life span in flies. A bioinformatics analysis of gene expression in rapidly aging SAMP8 mice during the last quadrant of their life span shows that J147 has a significant effect on ion transport pathways that are changed with aging, making their expression look more like that of younger animals. The molecular basis of these changes was then investigated in cell culture neurotoxicity assays that were the primary screen in the development of J147. Here we show that J147 and its molecular target, ATP synthase, regulate the maintenance of store-operated calcium entry (SOCE) and cell death during acute neurotoxicity. |
url |
https://doi.org/10.1038/s41514-020-00048-1 |
work_keys_str_mv |
AT joshuagoldberg targetingofintracellularca2storesasatherapeuticstrategyagainstagerelatedneurotoxicities AT antoniocurrais targetingofintracellularca2storesasatherapeuticstrategyagainstagerelatedneurotoxicities AT gamzeates targetingofintracellularca2storesasatherapeuticstrategyagainstagerelatedneurotoxicities AT linghuang targetingofintracellularca2storesasatherapeuticstrategyagainstagerelatedneurotoxicities AT maximshokhirev targetingofintracellularca2storesasatherapeuticstrategyagainstagerelatedneurotoxicities AT pamelamaher targetingofintracellularca2storesasatherapeuticstrategyagainstagerelatedneurotoxicities AT davidschubert targetingofintracellularca2storesasatherapeuticstrategyagainstagerelatedneurotoxicities |
_version_ |
1721187082131472384 |