Tempered Hermite process
A tempered Hermite process modifies the power law kernel in the time domain representation of a Hermite process by multiplying an exponential tempering factor $\lambda >0$ such that the process is well defined for Hurst parameter $H>\frac{1}{2}$. A tempered Hermite process is the weak converge...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
VTeX
2015-09-01
|
Series: | Modern Stochastics: Theory and Applications |
Subjects: | |
Online Access: | https://vmsta.vtex.vmt/doi/10.15559/15-VMSTA34 |
id |
doaj-aaa9918ce89e40ada45d05700915a963 |
---|---|
record_format |
Article |
spelling |
doaj-aaa9918ce89e40ada45d05700915a9632020-11-24T21:56:44ZengVTeXModern Stochastics: Theory and Applications2351-60462351-60542015-09-012432734110.15559/15-VMSTA34Tempered Hermite processFarzad Sabzikar0Department of Statistics, Iowa State University, Ames, IA 50010, USAA tempered Hermite process modifies the power law kernel in the time domain representation of a Hermite process by multiplying an exponential tempering factor $\lambda >0$ such that the process is well defined for Hurst parameter $H>\frac{1}{2}$. A tempered Hermite process is the weak convergence limit of a certain discrete chaos process.https://vmsta.vtex.vmt/doi/10.15559/15-VMSTA34Discrete chaoslimit theoremWiener–Itô integralFourier transform |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Farzad Sabzikar |
spellingShingle |
Farzad Sabzikar Tempered Hermite process Modern Stochastics: Theory and Applications Discrete chaos limit theorem Wiener–Itô integral Fourier transform |
author_facet |
Farzad Sabzikar |
author_sort |
Farzad Sabzikar |
title |
Tempered Hermite process |
title_short |
Tempered Hermite process |
title_full |
Tempered Hermite process |
title_fullStr |
Tempered Hermite process |
title_full_unstemmed |
Tempered Hermite process |
title_sort |
tempered hermite process |
publisher |
VTeX |
series |
Modern Stochastics: Theory and Applications |
issn |
2351-6046 2351-6054 |
publishDate |
2015-09-01 |
description |
A tempered Hermite process modifies the power law kernel in the time domain representation of a Hermite process by multiplying an exponential tempering factor $\lambda >0$ such that the process is well defined for Hurst parameter $H>\frac{1}{2}$. A tempered Hermite process is the weak convergence limit of a certain discrete chaos process. |
topic |
Discrete chaos limit theorem Wiener–Itô integral Fourier transform |
url |
https://vmsta.vtex.vmt/doi/10.15559/15-VMSTA34 |
work_keys_str_mv |
AT farzadsabzikar temperedhermiteprocess |
_version_ |
1725857425312972800 |