Application of Mathematical Symmetrical Group Theory in the Creation Process of Digital Holograms
This work presents an algorithm to reduce the multiplicative computational complexity in the creation of digital holograms, where an object is considered as a set of point sources using mathematical symmetry properties of both the core in the Fresnel integral and the image. The image is modeled usin...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2017-01-01
|
Series: | Mathematical Problems in Engineering |
Online Access: | http://dx.doi.org/10.1155/2017/5612743 |
id |
doaj-aa9da5b999f34b7e96fb929129cf9ff0 |
---|---|
record_format |
Article |
spelling |
doaj-aa9da5b999f34b7e96fb929129cf9ff02020-11-25T00:35:47ZengHindawi LimitedMathematical Problems in Engineering1024-123X1563-51472017-01-01201710.1155/2017/56127435612743Application of Mathematical Symmetrical Group Theory in the Creation Process of Digital HologramsAgustín Pérez-Ramírez0Julian Guerrero Juk1Rafael Sanchez-Lara2Joel Antonio Trejo-Sánchez3Lelio de la Cruz-May4Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Autopista del Sol Km 104, Real del Puente, 62790 Xochitepec, MOR, MexicoTecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Autopista del Sol Km 104, Real del Puente, 62790 Xochitepec, MOR, MexicoFacultad de Ingeniería, Universidad Autónoma del Carmen, 24180 Ciudad del Carmen, CAM, MexicoCONACyT-Centro de Investigación en Matemáticas, 97205 Mérida, YUC, MexicoFacultad de Ingeniería, Universidad Autónoma del Carmen, 24180 Ciudad del Carmen, CAM, MexicoThis work presents an algorithm to reduce the multiplicative computational complexity in the creation of digital holograms, where an object is considered as a set of point sources using mathematical symmetry properties of both the core in the Fresnel integral and the image. The image is modeled using group theory. This algorithm has multiplicative complexity equal to zero and an additive complexity (k-1)N2 for the case of sparse matrices or binary images, where k is the number of pixels other than zero and N2 is the total of points in the image.http://dx.doi.org/10.1155/2017/5612743 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Agustín Pérez-Ramírez Julian Guerrero Juk Rafael Sanchez-Lara Joel Antonio Trejo-Sánchez Lelio de la Cruz-May |
spellingShingle |
Agustín Pérez-Ramírez Julian Guerrero Juk Rafael Sanchez-Lara Joel Antonio Trejo-Sánchez Lelio de la Cruz-May Application of Mathematical Symmetrical Group Theory in the Creation Process of Digital Holograms Mathematical Problems in Engineering |
author_facet |
Agustín Pérez-Ramírez Julian Guerrero Juk Rafael Sanchez-Lara Joel Antonio Trejo-Sánchez Lelio de la Cruz-May |
author_sort |
Agustín Pérez-Ramírez |
title |
Application of Mathematical Symmetrical Group Theory in the Creation Process of Digital Holograms |
title_short |
Application of Mathematical Symmetrical Group Theory in the Creation Process of Digital Holograms |
title_full |
Application of Mathematical Symmetrical Group Theory in the Creation Process of Digital Holograms |
title_fullStr |
Application of Mathematical Symmetrical Group Theory in the Creation Process of Digital Holograms |
title_full_unstemmed |
Application of Mathematical Symmetrical Group Theory in the Creation Process of Digital Holograms |
title_sort |
application of mathematical symmetrical group theory in the creation process of digital holograms |
publisher |
Hindawi Limited |
series |
Mathematical Problems in Engineering |
issn |
1024-123X 1563-5147 |
publishDate |
2017-01-01 |
description |
This work presents an algorithm to reduce the multiplicative computational complexity in the creation of digital holograms, where an object is considered as a set of point sources using mathematical symmetry properties of both the core in the Fresnel integral and the image. The image is modeled using group theory. This algorithm has multiplicative complexity equal to zero and an additive complexity (k-1)N2 for the case of sparse matrices or binary images, where k is the number of pixels other than zero and N2 is the total of points in the image. |
url |
http://dx.doi.org/10.1155/2017/5612743 |
work_keys_str_mv |
AT agustinperezramirez applicationofmathematicalsymmetricalgrouptheoryinthecreationprocessofdigitalholograms AT julianguerrerojuk applicationofmathematicalsymmetricalgrouptheoryinthecreationprocessofdigitalholograms AT rafaelsanchezlara applicationofmathematicalsymmetricalgrouptheoryinthecreationprocessofdigitalholograms AT joelantoniotrejosanchez applicationofmathematicalsymmetricalgrouptheoryinthecreationprocessofdigitalholograms AT leliodelacruzmay applicationofmathematicalsymmetricalgrouptheoryinthecreationprocessofdigitalholograms |
_version_ |
1725307704297127936 |