Crystal structure, Hirshfeld surface analysis and physicochemical characterization of bis[4-(dimethylamino)pyridinium] di-μ-chlorido-bis[dichloridomercurate(II)]

The title molecular salt, (C7H11N2)2[Hg2Cl6], crystallizes with two 4-(dimethylamino)pyridinium cations (A and B) and two half hexachloridodimercurate(II) anions in the asymmetric unit. The organic cations exhibit essentially the same features with an almost planar pyridyl ring (r.m.s. deviations of...

Full description

Bibliographic Details
Main Authors: Fatma Garci, Hela Ferjani, Hammouda Chebbi, Mariem Ben Jomaa, Mohamed Faouzi Zid
Format: Article
Language:English
Published: International Union of Crystallography 2019-11-01
Series:Acta Crystallographica Section E: Crystallographic Communications
Subjects:
Online Access:http://scripts.iucr.org/cgi-bin/paper?S2056989019013124
Description
Summary:The title molecular salt, (C7H11N2)2[Hg2Cl6], crystallizes with two 4-(dimethylamino)pyridinium cations (A and B) and two half hexachloridodimercurate(II) anions in the asymmetric unit. The organic cations exhibit essentially the same features with an almost planar pyridyl ring (r.m.s. deviations of 0.0028 and 0.0109 Å), which forms an inclined dihedral angle with the dimethyamino group [3.06 (1) and 1.61 (1)°, respectively]. The dimethylamino groups in the two cations are planar, and the C—N bond lengths are shorter than that in 4-(dimethylamino)pyridine. In the crystal, mixed cation–anion layers lying parallel to the (010) plane are formed through N—H...Cl hydrogen bonds and adjacent layers are linked by C—H...Cl hydrogen bonds, forming a three-dimensional network. The analyses of the calculated Hirshfeld surfaces confirm the relevance of the above intermolecular interactions, but also serve to further differentiate the weaker intermolecular interactions formed by the organic cations and inorganic anions, such as π–π and Cl...Cl interactions. The powder XRD data confirms the phase purity of the crystalline sample. Furthermore, the vibrational absorption bands were identified by IR spectroscopy and the optical properties were studied by using optical UV–visible absorption spectroscopy.
ISSN:2056-9890