Deformation Measuring Methods Based on Inertial Sensors for Airborne Distributed POS
This paper is focused on deformation measuring methods based on inertial sensors, which are used to achieve high accuracy motion parameters and the spatial distribution optimization of multiple slave systems in the airborne distributed Position and Orientation System or other purposes. In practical...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2017-01-01
|
Series: | International Journal of Aerospace Engineering |
Online Access: | http://dx.doi.org/10.1155/2017/9343215 |
Summary: | This paper is focused on deformation measuring methods based on inertial sensors, which are used to achieve high accuracy motion parameters and the spatial distribution optimization of multiple slave systems in the airborne distributed Position and Orientation System or other purposes. In practical application, the installation difficulty, cost, and accuracy of measuring equipment are the key factors that need to be considered synthetically. Motivated by these, deformation measuring methods based on gyros and accelerometers are proposed, respectively, and compared with the traditional method based on the inertial measurement unit (IMU). The mathematical models of these proposed methods are built, and the detailed derivations of them are given. Based on the Kalman filtering estimation, simulation and semiphysical simulation based on vehicle experiment show that the method based on gyros can obtain a similar estimation accuracy to the method based on IMU, and the method based on accelerometers has an advantage in y-axis deformation estimation. |
---|---|
ISSN: | 1687-5966 1687-5974 |