Optimising PHBV biopolymer production in haloarchaea via CRISPRi-mediated redirection of carbon flux

Lin et al. investigate the use of CRISPRi technology in haloarchaea to regulate the metabolic pathways related to PHBV synthesis to increase PHBV production in H. mediterranei. The authors report that repression of citrate synthase genes redirects metabolic flux and increases production of this degr...

Full description

Bibliographic Details
Main Authors: Lin Lin, Junyu Chen, Ruchira Mitra, Quanxiu Gao, Feiyue Cheng, Tong Xu, Zhenqiang Zuo, Hua Xiang, Jing Han
Format: Article
Language:English
Published: Nature Publishing Group 2021-08-01
Series:Communications Biology
Online Access:https://doi.org/10.1038/s42003-021-02541-z
id doaj-aa8868c2eed04a57a92cf82e318bfd90
record_format Article
spelling doaj-aa8868c2eed04a57a92cf82e318bfd902021-08-29T11:14:47ZengNature Publishing GroupCommunications Biology2399-36422021-08-014111310.1038/s42003-021-02541-zOptimising PHBV biopolymer production in haloarchaea via CRISPRi-mediated redirection of carbon fluxLin Lin0Junyu Chen1Ruchira Mitra2Quanxiu Gao3Feiyue Cheng4Tong Xu5Zhenqiang Zuo6Hua Xiang7Jing Han8State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of SciencesState Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of SciencesState Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of SciencesState Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of SciencesState Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of SciencesState Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of SciencesState Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of SciencesState Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of SciencesState Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of SciencesLin et al. investigate the use of CRISPRi technology in haloarchaea to regulate the metabolic pathways related to PHBV synthesis to increase PHBV production in H. mediterranei. The authors report that repression of citrate synthase genes redirects metabolic flux and increases production of this degradable bioplastic, which could be used as an alternative to chemical synthetic plastic.https://doi.org/10.1038/s42003-021-02541-z
collection DOAJ
language English
format Article
sources DOAJ
author Lin Lin
Junyu Chen
Ruchira Mitra
Quanxiu Gao
Feiyue Cheng
Tong Xu
Zhenqiang Zuo
Hua Xiang
Jing Han
spellingShingle Lin Lin
Junyu Chen
Ruchira Mitra
Quanxiu Gao
Feiyue Cheng
Tong Xu
Zhenqiang Zuo
Hua Xiang
Jing Han
Optimising PHBV biopolymer production in haloarchaea via CRISPRi-mediated redirection of carbon flux
Communications Biology
author_facet Lin Lin
Junyu Chen
Ruchira Mitra
Quanxiu Gao
Feiyue Cheng
Tong Xu
Zhenqiang Zuo
Hua Xiang
Jing Han
author_sort Lin Lin
title Optimising PHBV biopolymer production in haloarchaea via CRISPRi-mediated redirection of carbon flux
title_short Optimising PHBV biopolymer production in haloarchaea via CRISPRi-mediated redirection of carbon flux
title_full Optimising PHBV biopolymer production in haloarchaea via CRISPRi-mediated redirection of carbon flux
title_fullStr Optimising PHBV biopolymer production in haloarchaea via CRISPRi-mediated redirection of carbon flux
title_full_unstemmed Optimising PHBV biopolymer production in haloarchaea via CRISPRi-mediated redirection of carbon flux
title_sort optimising phbv biopolymer production in haloarchaea via crispri-mediated redirection of carbon flux
publisher Nature Publishing Group
series Communications Biology
issn 2399-3642
publishDate 2021-08-01
description Lin et al. investigate the use of CRISPRi technology in haloarchaea to regulate the metabolic pathways related to PHBV synthesis to increase PHBV production in H. mediterranei. The authors report that repression of citrate synthase genes redirects metabolic flux and increases production of this degradable bioplastic, which could be used as an alternative to chemical synthetic plastic.
url https://doi.org/10.1038/s42003-021-02541-z
work_keys_str_mv AT linlin optimisingphbvbiopolymerproductioninhaloarchaeaviacrisprimediatedredirectionofcarbonflux
AT junyuchen optimisingphbvbiopolymerproductioninhaloarchaeaviacrisprimediatedredirectionofcarbonflux
AT ruchiramitra optimisingphbvbiopolymerproductioninhaloarchaeaviacrisprimediatedredirectionofcarbonflux
AT quanxiugao optimisingphbvbiopolymerproductioninhaloarchaeaviacrisprimediatedredirectionofcarbonflux
AT feiyuecheng optimisingphbvbiopolymerproductioninhaloarchaeaviacrisprimediatedredirectionofcarbonflux
AT tongxu optimisingphbvbiopolymerproductioninhaloarchaeaviacrisprimediatedredirectionofcarbonflux
AT zhenqiangzuo optimisingphbvbiopolymerproductioninhaloarchaeaviacrisprimediatedredirectionofcarbonflux
AT huaxiang optimisingphbvbiopolymerproductioninhaloarchaeaviacrisprimediatedredirectionofcarbonflux
AT jinghan optimisingphbvbiopolymerproductioninhaloarchaeaviacrisprimediatedredirectionofcarbonflux
_version_ 1721187081788588032