Seismic vibration control using a novel inerto-elastic damper
The use of advanced structural control devices is an effective engineering solution to reduce earthquake induced damages to structures. Owing to rapid advancement in technology and persistent research efforts, a variety of control devices have been developed and successfully implemented. Quite recen...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
EDP Sciences
2018-01-01
|
Series: | MATEC Web of Conferences |
Online Access: | https://doi.org/10.1051/matecconf/201821114003 |
id |
doaj-aa59aed687f04d0ea33a72cb92fef11a |
---|---|
record_format |
Article |
spelling |
doaj-aa59aed687f04d0ea33a72cb92fef11a2021-02-02T06:56:29ZengEDP SciencesMATEC Web of Conferences2261-236X2018-01-012111400310.1051/matecconf/201821114003matecconf_vetomacxiv2018_14003Seismic vibration control using a novel inerto-elastic damperAbdeddaim MahdiKasar Arnav A.Djedoui NassimThe use of advanced structural control devices is an effective engineering solution to reduce earthquake induced damages to structures. Owing to rapid advancement in technology and persistent research efforts, a variety of control devices have been developed and successfully implemented. Quite recently, a new passive damper, called inerter has been introduced, which is capable of developing a fictive mass. This study presents a novel inerto-elastic damper, which combines the inerter devices with classical elastic springs, and demonstrates the effectiveness of these devices in achieving seismic response reduction. The inerto-elastic device employs the inerter and elastic spring in parallel to control the seismic structural response. The effectiveness of the inerto-elastic dampers has been demonstrated through the response of a multi-degree of freedom system subjected to seismic excitations. The results of the analysis show a significant reduction in the response of the structure with novel inerto-elastic damper, as compared to those of structures with normal elastic spring as well as no dampers. The response quantities of interest, considered for this study are top floor displacement, inter-storey drift and base shear. The study also underlines optimal parameters for the inerter fictive mass and the elastic spring stiffness on the basis of the results obtained.https://doi.org/10.1051/matecconf/201821114003 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Abdeddaim Mahdi Kasar Arnav A. Djedoui Nassim |
spellingShingle |
Abdeddaim Mahdi Kasar Arnav A. Djedoui Nassim Seismic vibration control using a novel inerto-elastic damper MATEC Web of Conferences |
author_facet |
Abdeddaim Mahdi Kasar Arnav A. Djedoui Nassim |
author_sort |
Abdeddaim Mahdi |
title |
Seismic vibration control using a novel inerto-elastic damper |
title_short |
Seismic vibration control using a novel inerto-elastic damper |
title_full |
Seismic vibration control using a novel inerto-elastic damper |
title_fullStr |
Seismic vibration control using a novel inerto-elastic damper |
title_full_unstemmed |
Seismic vibration control using a novel inerto-elastic damper |
title_sort |
seismic vibration control using a novel inerto-elastic damper |
publisher |
EDP Sciences |
series |
MATEC Web of Conferences |
issn |
2261-236X |
publishDate |
2018-01-01 |
description |
The use of advanced structural control devices is an effective engineering solution to reduce earthquake induced damages to structures. Owing to rapid advancement in technology and persistent research efforts, a variety of control devices have been developed and successfully implemented. Quite recently, a new passive damper, called inerter has been introduced, which is capable of developing a fictive mass. This study presents a novel inerto-elastic damper, which combines the inerter devices with classical elastic springs, and demonstrates the effectiveness of these devices in achieving seismic response reduction. The inerto-elastic device employs the inerter and elastic spring in parallel to control the seismic structural response. The effectiveness of the inerto-elastic dampers has been demonstrated through the response of a multi-degree of freedom system subjected to seismic excitations. The results of the analysis show a significant reduction in the response of the structure with novel inerto-elastic damper, as compared to those of structures with normal elastic spring as well as no dampers. The response quantities of interest, considered for this study are top floor displacement, inter-storey drift and base shear. The study also underlines optimal parameters for the inerter fictive mass and the elastic spring stiffness on the basis of the results obtained. |
url |
https://doi.org/10.1051/matecconf/201821114003 |
work_keys_str_mv |
AT abdeddaimmahdi seismicvibrationcontrolusinganovelinertoelasticdamper AT kasararnava seismicvibrationcontrolusinganovelinertoelasticdamper AT djedouinassim seismicvibrationcontrolusinganovelinertoelasticdamper |
_version_ |
1724300358880067584 |