Deep Learning Based Electric Pylon Detection in Remote Sensing Images

The working condition of power network can significantly influence urban development. Among all the power facilities, electric pylon has an important effect on the normal operation of electricity supply. Therefore, the work status of electric pylons requires continuous and real-time monitoring. Cons...

Full description

Bibliographic Details
Main Authors: Sijia Qiao, Yu Sun, Haopeng Zhang
Format: Article
Language:English
Published: MDPI AG 2020-06-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/12/11/1857
Description
Summary:The working condition of power network can significantly influence urban development. Among all the power facilities, electric pylon has an important effect on the normal operation of electricity supply. Therefore, the work status of electric pylons requires continuous and real-time monitoring. Considering the low efficiency of manual detection, we propose to utilize deep learning methods for electric pylon detection in high-resolution remote sensing images in this paper. To verify the effectiveness of electric pylon detection methods based on deep learning, we tested and compared the comprehensive performance of 10 state-of-the-art deep-learning-based detectors with different characteristics. Extensive experiments were carried out on a self-made dataset containing 1500 images. Moreover, 50 relatively complicated images were selected from the dataset to test and evaluate the adaptability to actual complex situations and resolution variations. Experimental results show the feasibility of applying deep learning methods to electric pylon detection. The comparative analysis can provide reference for the selection of specific deep learning model in actual electric pylon detection task.
ISSN:2072-4292