High-Resolution Inline Density Measurements: Insight on Multiphase Flow and Transport Phenomena in Porous Media
Understanding fluid flow in porous media is essential with complex and multiphase fluid flow. We demonstrate that high-resolution in-line density measurements are a valuable tool in this regard. An in-line densitometer is used in fluid flow in porous media applications to quantify fluid production a...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
EDP Sciences
2020-01-01
|
Series: | E3S Web of Conferences |
Online Access: | https://www.e3s-conferences.org/articles/e3sconf/pdf/2020/06/e3sconf_sca2019_01005.pdf |
id |
doaj-a9c91836ed1545f8a3a3148c26041e18 |
---|---|
record_format |
Article |
spelling |
doaj-a9c91836ed1545f8a3a3148c26041e182021-04-02T14:32:46ZengEDP SciencesE3S Web of Conferences2267-12422020-01-011460100510.1051/e3sconf/202014601005e3sconf_sca2019_01005High-Resolution Inline Density Measurements: Insight on Multiphase Flow and Transport Phenomena in Porous MediaFalat JelayneFehr AdamTelmadarreie AliBryant StevenUnderstanding fluid flow in porous media is essential with complex and multiphase fluid flow. We demonstrate that high-resolution in-line density measurements are a valuable tool in this regard. An in-line densitometer is used in fluid flow in porous media applications to quantify fluid production and obtain quantitative and qualitative information such as breakthrough times, emulsion/foam generation, and steam condensation. In order to determine the potential applications for in-line densitometry for fluid flow in porous media, a series of sand pack floods were performed with a densitometer placed at the outlet of a sand pack. All fluids passed through the measurement cell at experiential temperatures and pressures. An algorithm was developed and applied to the density data to provide a quantitative determination of oil and water production. The second series of tests were performed at high temperature and pressure, with a densitometer placed at the inlet and outlet of a sand pack, for steam applications. In both series of experiments, data acquisition was collected at 1 hertz and the analyzed density data was compared to results from the conventional effluent analysis, including Dean-Stark, toluene separations, magnetic susceptibility measurement, and flash calculations where applicable. The high-resolution monitoring of effluent from a flow experiment through porous media in a system with two phases of known densities enables two-phase production to be accurately quantified in the case of both light and heavy oil. The frequency of measurements results in a high-resolution history of breakthrough times and fluid behavior. In the case of monitoring steam injection processes, reliable laboratory tests show that in-line density measurements enable the determination of steam quality at the inlet and outlet of a sand pack and qualitative determination of steam condensation monitoring The use of in-line densitometry provides insight on the monitoring of complex fluid flow in porous media, which typical bulk effluent analysis is not able to do. The ability to measure produced fluids at high resolution and extreme temperatures reduces mass balance error associated with the effluent collection and broadens our understanding of complex fluid flow in porous media.https://www.e3s-conferences.org/articles/e3sconf/pdf/2020/06/e3sconf_sca2019_01005.pdf |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Falat Jelayne Fehr Adam Telmadarreie Ali Bryant Steven |
spellingShingle |
Falat Jelayne Fehr Adam Telmadarreie Ali Bryant Steven High-Resolution Inline Density Measurements: Insight on Multiphase Flow and Transport Phenomena in Porous Media E3S Web of Conferences |
author_facet |
Falat Jelayne Fehr Adam Telmadarreie Ali Bryant Steven |
author_sort |
Falat Jelayne |
title |
High-Resolution Inline Density Measurements: Insight on Multiphase Flow and Transport Phenomena in Porous Media |
title_short |
High-Resolution Inline Density Measurements: Insight on Multiphase Flow and Transport Phenomena in Porous Media |
title_full |
High-Resolution Inline Density Measurements: Insight on Multiphase Flow and Transport Phenomena in Porous Media |
title_fullStr |
High-Resolution Inline Density Measurements: Insight on Multiphase Flow and Transport Phenomena in Porous Media |
title_full_unstemmed |
High-Resolution Inline Density Measurements: Insight on Multiphase Flow and Transport Phenomena in Porous Media |
title_sort |
high-resolution inline density measurements: insight on multiphase flow and transport phenomena in porous media |
publisher |
EDP Sciences |
series |
E3S Web of Conferences |
issn |
2267-1242 |
publishDate |
2020-01-01 |
description |
Understanding fluid flow in porous media is essential with complex and multiphase fluid flow. We demonstrate that high-resolution in-line density measurements are a valuable tool in this regard. An in-line densitometer is used in fluid flow in porous media applications to quantify fluid production and obtain quantitative and qualitative information such as breakthrough times, emulsion/foam generation, and steam condensation.
In order to determine the potential applications for in-line densitometry for fluid flow in porous media, a series of sand pack floods were performed with a densitometer placed at the outlet of a sand pack. All fluids passed through the measurement cell at experiential temperatures and pressures. An algorithm was developed and applied to the density data to provide a quantitative determination of oil and water production. The second series of tests were performed at high temperature and pressure, with a densitometer placed at the inlet and outlet of a sand pack, for steam applications. In both series of experiments, data acquisition was collected at 1 hertz and the analyzed density data was compared to results from the conventional effluent analysis, including Dean-Stark, toluene separations, magnetic susceptibility measurement, and flash calculations where applicable.
The high-resolution monitoring of effluent from a flow experiment through porous media in a system with two phases of known densities enables two-phase production to be accurately quantified in the case of both light and heavy oil. The frequency of measurements results in a high-resolution history of breakthrough times and fluid behavior. In the case of monitoring steam injection processes, reliable laboratory tests show that in-line density measurements enable the determination of steam quality at the inlet and outlet of a sand pack and qualitative determination of steam condensation monitoring
The use of in-line densitometry provides insight on the monitoring of complex fluid flow in porous media, which typical bulk effluent analysis is not able to do. The ability to measure produced fluids at high resolution and extreme temperatures reduces mass balance error associated with the effluent collection and broadens our understanding of complex fluid flow in porous media. |
url |
https://www.e3s-conferences.org/articles/e3sconf/pdf/2020/06/e3sconf_sca2019_01005.pdf |
work_keys_str_mv |
AT falatjelayne highresolutioninlinedensitymeasurementsinsightonmultiphaseflowandtransportphenomenainporousmedia AT fehradam highresolutioninlinedensitymeasurementsinsightonmultiphaseflowandtransportphenomenainporousmedia AT telmadarreieali highresolutioninlinedensitymeasurementsinsightonmultiphaseflowandtransportphenomenainporousmedia AT bryantsteven highresolutioninlinedensitymeasurementsinsightonmultiphaseflowandtransportphenomenainporousmedia |
_version_ |
1721562018996027392 |