Upward Unsteady-State Solidification of Dilute Al–Nb Alloys: Microstructure Characterization, Microhardness, Dynamic Modulus of Elasticity, Damping, and XRD Analyses

Aluminium alloys form many important structural components, and the addition of alloying elements contributes to the improvement of properties and characteristics. The objective of this work is to study the influence of thermal variables on the microstructure, present phases, microhardness, dynamic...

Full description

Bibliographic Details
Main Authors: Maycol Moreira Coutinho, José Ildon Saraiva Silva, Thiago Primo Sousa, Daniel Monteiro Rosa
Format: Article
Language:English
Published: MDPI AG 2019-06-01
Series:Metals
Subjects:
Online Access:https://www.mdpi.com/2075-4701/9/6/713
id doaj-a9c4ca6ca9d44f87a4e3c1c5789c867f
record_format Article
spelling doaj-a9c4ca6ca9d44f87a4e3c1c5789c867f2020-11-25T01:49:38ZengMDPI AGMetals2075-47012019-06-019671310.3390/met9060713met9060713Upward Unsteady-State Solidification of Dilute Al–Nb Alloys: Microstructure Characterization, Microhardness, Dynamic Modulus of Elasticity, Damping, and XRD AnalysesMaycol Moreira Coutinho0José Ildon Saraiva Silva1Thiago Primo Sousa2Daniel Monteiro Rosa3Department of Mechanical Engineering, University of Brasília-UNB, 70910-900 Brasília, BrazilDepartment of Mechanical Engineering, University of Brasília-UNB, 70910-900 Brasília, BrazilDepartment of Mechanical Engineering, University of Brasília-UNB, 70910-900 Brasília, BrazilDepartment of Mechanical Engineering, University of Brasília-UNB, 70910-900 Brasília, BrazilAluminium alloys form many important structural components, and the addition of alloying elements contributes to the improvement of properties and characteristics. The objective of this work is to study the influence of thermal variables on the microstructure, present phases, microhardness, dynamic modulus of elasticity, and damping frequency in unidirectional solidification experiments, which were performed in situ during the manufacturing of Al&#8722;0.8 Nb and Al&#8722;1.2 Nb (wt.%) alloys. Experimental laws for the primary (<i>&#955;</i><sub>1</sub>) and secondary (<i>&#955;</i><sub>2</sub>) dendritic spacings for each alloy were given as a function of thermal variables. For Al&#8722;0.8%wt Nb, <i>&#955;</i><sub>1</sub> = 600.1(<inline-formula> <math display="inline"> <semantics> <mover accent="true"> <mi>T</mi> <mo>˙</mo> </mover> </semantics> </math> </inline-formula>)<sup>&#8722;1.85</sup> and <i>&#955;</i><sub>2</sub> = 186.1(<i>V</i><sub>L</sub>)<sup>&#8722;3.62</sup>; and for Al&#8722;1.2%wt Nb, <i>&#955;</i><sub>1</sub> = 133.6(<inline-formula> <math display="inline"> <semantics> <mover accent="true"> <mi>T</mi> <mo>˙</mo> </mover> </semantics> </math> </inline-formula>)<sup>&#8722;1.85</sup> and <i>&#955;</i><sub>2</sub> = 55.6(<i>V</i><sub>L</sub>)<sup>&#8722;3.62</sup>. Moreover, experimental growth laws that correlate the dendritic spacings are proposed. An increase in dendritic spacing influences the solidification kinetics observed, indicating that metal/mold interface distance or an increase in Nb content lowers the liquidus isotherm velocity (<i>V</i><sub>L</sub>) and the cooling rate (<i>Ṫ</i>). There is also a small increase in the microhardness, dynamic modulus of elasticity, and damping frequency in relation to the composition of the alloy and the microstructure.https://www.mdpi.com/2075-4701/9/6/713Al–Nb alloysmicrostructure characterizationdendritic spacingunidirectional solidification
collection DOAJ
language English
format Article
sources DOAJ
author Maycol Moreira Coutinho
José Ildon Saraiva Silva
Thiago Primo Sousa
Daniel Monteiro Rosa
spellingShingle Maycol Moreira Coutinho
José Ildon Saraiva Silva
Thiago Primo Sousa
Daniel Monteiro Rosa
Upward Unsteady-State Solidification of Dilute Al–Nb Alloys: Microstructure Characterization, Microhardness, Dynamic Modulus of Elasticity, Damping, and XRD Analyses
Metals
Al–Nb alloys
microstructure characterization
dendritic spacing
unidirectional solidification
author_facet Maycol Moreira Coutinho
José Ildon Saraiva Silva
Thiago Primo Sousa
Daniel Monteiro Rosa
author_sort Maycol Moreira Coutinho
title Upward Unsteady-State Solidification of Dilute Al–Nb Alloys: Microstructure Characterization, Microhardness, Dynamic Modulus of Elasticity, Damping, and XRD Analyses
title_short Upward Unsteady-State Solidification of Dilute Al–Nb Alloys: Microstructure Characterization, Microhardness, Dynamic Modulus of Elasticity, Damping, and XRD Analyses
title_full Upward Unsteady-State Solidification of Dilute Al–Nb Alloys: Microstructure Characterization, Microhardness, Dynamic Modulus of Elasticity, Damping, and XRD Analyses
title_fullStr Upward Unsteady-State Solidification of Dilute Al–Nb Alloys: Microstructure Characterization, Microhardness, Dynamic Modulus of Elasticity, Damping, and XRD Analyses
title_full_unstemmed Upward Unsteady-State Solidification of Dilute Al–Nb Alloys: Microstructure Characterization, Microhardness, Dynamic Modulus of Elasticity, Damping, and XRD Analyses
title_sort upward unsteady-state solidification of dilute al–nb alloys: microstructure characterization, microhardness, dynamic modulus of elasticity, damping, and xrd analyses
publisher MDPI AG
series Metals
issn 2075-4701
publishDate 2019-06-01
description Aluminium alloys form many important structural components, and the addition of alloying elements contributes to the improvement of properties and characteristics. The objective of this work is to study the influence of thermal variables on the microstructure, present phases, microhardness, dynamic modulus of elasticity, and damping frequency in unidirectional solidification experiments, which were performed in situ during the manufacturing of Al&#8722;0.8 Nb and Al&#8722;1.2 Nb (wt.%) alloys. Experimental laws for the primary (<i>&#955;</i><sub>1</sub>) and secondary (<i>&#955;</i><sub>2</sub>) dendritic spacings for each alloy were given as a function of thermal variables. For Al&#8722;0.8%wt Nb, <i>&#955;</i><sub>1</sub> = 600.1(<inline-formula> <math display="inline"> <semantics> <mover accent="true"> <mi>T</mi> <mo>˙</mo> </mover> </semantics> </math> </inline-formula>)<sup>&#8722;1.85</sup> and <i>&#955;</i><sub>2</sub> = 186.1(<i>V</i><sub>L</sub>)<sup>&#8722;3.62</sup>; and for Al&#8722;1.2%wt Nb, <i>&#955;</i><sub>1</sub> = 133.6(<inline-formula> <math display="inline"> <semantics> <mover accent="true"> <mi>T</mi> <mo>˙</mo> </mover> </semantics> </math> </inline-formula>)<sup>&#8722;1.85</sup> and <i>&#955;</i><sub>2</sub> = 55.6(<i>V</i><sub>L</sub>)<sup>&#8722;3.62</sup>. Moreover, experimental growth laws that correlate the dendritic spacings are proposed. An increase in dendritic spacing influences the solidification kinetics observed, indicating that metal/mold interface distance or an increase in Nb content lowers the liquidus isotherm velocity (<i>V</i><sub>L</sub>) and the cooling rate (<i>Ṫ</i>). There is also a small increase in the microhardness, dynamic modulus of elasticity, and damping frequency in relation to the composition of the alloy and the microstructure.
topic Al–Nb alloys
microstructure characterization
dendritic spacing
unidirectional solidification
url https://www.mdpi.com/2075-4701/9/6/713
work_keys_str_mv AT maycolmoreiracoutinho upwardunsteadystatesolidificationofdilutealnballoysmicrostructurecharacterizationmicrohardnessdynamicmodulusofelasticitydampingandxrdanalyses
AT joseildonsaraivasilva upwardunsteadystatesolidificationofdilutealnballoysmicrostructurecharacterizationmicrohardnessdynamicmodulusofelasticitydampingandxrdanalyses
AT thiagoprimosousa upwardunsteadystatesolidificationofdilutealnballoysmicrostructurecharacterizationmicrohardnessdynamicmodulusofelasticitydampingandxrdanalyses
AT danielmonteirorosa upwardunsteadystatesolidificationofdilutealnballoysmicrostructurecharacterizationmicrohardnessdynamicmodulusofelasticitydampingandxrdanalyses
_version_ 1725006059084447744