Transverse-mode control in VCSELs by electrically tunable liquid crystal mode filters

A distinctive method is used to achieve transverse-mode control by building and integrating a tunable liquid crystal (LC) mode filter on top of traditional vertical-cavity surface-emitting lasers (VCSELs). An LC cell is fabricated by injecting a type of nematic LC material (E7) in an annular groove...

Full description

Bibliographic Details
Main Authors: Hongyan Shao, Baolu Guan, Lijie Cui, Ning Cui, Yang Zhang, Yiping Zeng
Format: Article
Language:English
Published: AIP Publishing LLC 2021-01-01
Series:AIP Advances
Online Access:http://dx.doi.org/10.1063/5.0033685
Description
Summary:A distinctive method is used to achieve transverse-mode control by building and integrating a tunable liquid crystal (LC) mode filter on top of traditional vertical-cavity surface-emitting lasers (VCSELs). An LC cell is fabricated by injecting a type of nematic LC material (E7) in an annular groove patterned by SiO2. By electrically tuning the refractive index of the LC, a spatially dependent reflectivity profile can be achieved and optimized, which directly influences the threshold modal gain of each transverse mode provided by oxide-confined VCSELs. The flexible and accurate control performance of the LC mode filter structure have been demonstrated by the simulation results and our analysis. This design is a completely novel method to realize VCSELs with an accurate and real-time controllable transverse-mode, and it will probably play a significant role in the future.
ISSN:2158-3226